Stata : liste de modules utiles
Graphics
stripplot
ssc install stripplot
Voir aussi les autres commandes graphiques développées par Nick Cox
Reporting
fitstat
La commande fitstat, développée par les auteurs de Regression Models for Categorical Dependent Variables Using Stata [1] fournit des indicateurs additionnels de qualité d’ajustement d’une large variété de modèles de régression. Elle est compatible avec
Exemple :
webuse lbw tabulate race, gen(irace) logit low lwt irace2 irace3 ui, or nolog fitstat
set more off
webuse lbw
(Hosmer & Lemeshow data)
tabulate race, gen(irace)
race | Freq. Percent Cum.
------------+-----------------------------------
white | 96 50.79 50.79
black | 26 13.76 64.55
other | 67 35.45 100.00
------------+-----------------------------------
Total | 189 100.00
logit low lwt irace2 irace3 ui, or nolog
Logistic regression Number of obs = 189
LR chi2(4) = 15.15
Prob > chi2 = 0.0044
Log likelihood = -109.76147 Pseudo R2 = 0.0646
------------------------------------------------------------------------------
low | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lwt | .9862315 .0063834 -2.14 0.032 .9737992 .9988226
irace2 | 3.032503 1.485612 2.26 0.024 1.160916 7.921398
irace3 | 1.616586 .5835255 1.33 0.183 .7967967 3.279819
ui | 2.299748 .9819923 1.95 0.051 .9959037 5.310596
_cons | 1.628981 1.399932 0.57 0.570 .302274 8.778724
------------------------------------------------------------------------------
fitstat
Measures of Fit for logit of low
Log-Lik Intercept Only: -117.336 Log-Lik Full Model: -109.761
D(184): 219.523 LR(4): 15.149
Prob > LR: 0.004
McFadden's R2: 0.065 McFadden's Adj R2: 0.022
ML (Cox-Snell) R2: 0.077 Cragg-Uhler(Nagelkerke) R2: 0.108
McKelvey & Zavoina's R2: 0.115 Efron's R2: 0.078
Variance of y*: 3.718 Variance of error: 3.290
Count R2: 0.683 Adj Count R2: -0.017
AIC: 1.214 AIC*n: 229.523
BIC: -744.959 BIC': 5.818
BIC used by Stata: 245.732 AIC used by Stata: 229.523
Une commande de post-estimation similaire est prvalue
Attention, pour installer cette commande correctement il faut bien choisir le package spost9 et non l’entrée correspondant à un Stata Journal.
quietly: summarize lwt, detail display r(p50) prvalue, x(lwt=121 irace2=1 irace3=0 ui=1)
quietly: summarize lwt, detail
display r(p50)
121
prvalue, x(lwt=121 irace2=1 irace3=0 ui=1)
logit: Predictions for low
Confidence intervals by delta method
95% Conf. Interval
Pr(y=1|x): 0.6797 [ 0.4394, 0.9201]
Pr(y=0|x): 0.3203 [ 0.0799, 0.5606]
lwt irace2 irace3 ui
x= 121 1 0 1
Références
| [1] |
J. Scott Long and J. Freese.
Regression Models For Categorical Dependent Variables Using
Stata.
Stata Press, 2001.
Keywords: Stata |