
1 Neil 2018; Robbins and Hannah 2008.

Vim 101
August 2020

Former Emacs user here. Trying to uncover the basics of Vim key-
bindings, especially for selection, movement and action on text
objects, when using Doom Emacs (yes, just cheating, I’m still an
Emacs guy).

Overview

Hereafter, I will consider only three kinds of operation in text edit-
ing related tasks: motion, selection and transformation. Motion or
movement refers to moving around in the buffer. Transformations
are applied to text objects, whether it is a single object (e.g., adjacent
word or line) or a visual selection. Finally, selection refers to the re-
striction of the whole buffer to a particular region of text, using either
character, word, line, sentence or paragraph as the unit of interest. I
will not discuss keybindings specific of a particular mode (e.g., VCS,
Markdown, Org) although I may record some shortcuts specific to
prog-mode in the last section.

There are many good references on Vim itself, or Vim best prac-
tices.1 In the meantime, here’s a nice overview of why Vim may be
a good companion for programming stuff, written by Steve Losh:
Coming Home to Vim. The document Emacs/Evil for Vim Users
provides an excellent introduction to the difference between Emacs
and Vim terminolgy (e.g., what does ’yanking’ means in Emacs or
Vim), and how Evil compares to standard Vim. Finally, I recommend
the Vim quick reference card for a handy cheat sheet.

Although this document focus on Vim (or Neovim) itself, it is
intended as a cheat sheet for Emacs users like me. I have had a
hard time switching to modal editing, and I still need some Emacs
keybindings, which I also use in other TUI settings, like the terminal
(e.g., C-a and C-e to navigate to the begining or end of the line, C-w to
delete the previous word).

I’ve been able to get by without almost ever using Emacs’ default
keybindings. The exceptions for me are C-g and C-h. Even if you don’t
plan on learning emacs’ keybindings in full, I recommend learning
these when starting out. — Fox Kiester

Indeed, the C-g shortcut remain important as it allows to break
almost everything in Emacs, but the help system is easily accessible
using Doom Emacs using the leader key (SPC) only. Likewise, C-c
C-c remains ubiquitous in various modes, both in Doom and vanilla
Emacs.

https://stevelosh.com/blog/2010/09/coming-home-to-vim/
https://github.com/noctuid/evil-guide
http://tnerual.eriogerg.free.fr/vim.html

vim 101 2

2 See also Vim Crash Course, which
largely inspired this section.

So far the best implementation of modal editing à la Vim in Emacs
is provided by the Evil package. While the defaults are good, you
will likely benefit from its companion packages by using either
Spacemacs or Doom Emacs, the later being probably closer to Emacs
core functionalities. If you ever need to go back to the classical
Emacs editing mode, you’ll just have to press C-z and you’ll get
your familiar Emacs keybindings (minus those remapped by the
starter kit you choose, if any).

Unless otherwise stated, the following settings apply to both Vim
(and mostly Vi) and Emacs (with Evil mode).

Basic stuff

Modes

We can distinguish two main modes in Vim: Normal mode and Insert
mode. Insert mode is for writing text per se while Normal mode
is reserved for moving around or altering text under the cursor or
nearby. In addition to Normal mode, there is also a Visual mode,
which can operate from point under cursor, line or block. Normal
and Visual modes are discussed in the next section. The following
paragraphs summarize the main commands that can be used to enter
Insert mode.2

Whenever we want to write down something, we press i or a to
enter Insert mode before or after the current character. To go back to
Normal mode, we just have to press <Esc>. There are, however, many
other ways to switch to Insert mode, as detailed in Table 1.

Keys Description
I Switch to Insert mode at the beginning of the current line
A Switch to Insert mode After the end of the current line
o Add a new line after the current line and switch to Insert mode
O Add a new line before the current line and switch to Insert mode
c<char> Change text from cursor until occurrence of <char>
cc Change the whole line
C Changes from here to end of line

Table 1: Switching between Normal and
Insert modes

Normal mode is a bit specific to Vim or other modal editors like
Kakoune or Evil mode in Emacs. Insert mode is what we usually
expect from the state of a classical text editor: characters are printed
as you write them. However, there is an additional mode that bear
similarities with Insert mode: Replacement mode. In this case, r
means to replace the current character with the next character typed,
while R is used to replace characters until going back to Normal
mode (<Esc>). Other variants for in-place replacement are detailed
in Table 1. Note that some of these key combinations appear as

https://gist.github.com/dmsul/8bb08c686b70d5a68da0e2cb81cd857f
https://github.com/emacs-evil/evil
https://github.com/hlissner/doom-emacs/tree/develop/modules/editor/evil#plugins
http://kakoune.org
https://github.com/emacs-evil/evil

vim 101 3

3 To use standard Emacs movements
to jump to the beginning or end of
line in Insert mode, one can use (in
Vim): inoremap <C-e> <C-o>$ and
inoremap <C-a> <C-o>0. With Evil, this
becomes (see Evil Mode best practice
on Stack Overflow): (define-key
evil-normal-state-map "\C-e"

’evil-end-of-line), with similar
instructions for evil-motion-state-map
and evil-visual-state-map. Note
that the evil-insert-state-map is not
necessary with Doom Emacs.

shorthand for more general key compositions. For instance, C may
be seen as Di, and o as $a<Enter> (or A<Enter>). This is where Vim
really rocks: You don’t need to learn a lot of keybindings but how to
best combine them.

After a few days of use, you should realize that Normal mode
should be your default "home mode." Insert mode is dedicated to
editing text, and you should refrain from trying to move around or
jump to another location in your buffer using this mode. Instead,
switch back to Normal mode as soon as you’re done with your
editing task, and then stick to this mode while you don’t need to
write down some other text: Use motion to jump around, or select
text or region using visual mode or shorthand commands (see next
section).

Motion

Normal mode is the main mode, together with Visual mode, we use
to jump to different locations in a buffer or to select part of it. We can
consider two (complementary) approaches for moving around in a
buffer: moving by entity (e.g., character, word, matching brackets,
line, or block), or by matching pattern after a search query, based on
regular expression or plain text. Most of the time, this is followed by
an edit operation (in Insert mode), and then we go back to Normal
mode for further operations, as recommended above.

The quadriumvirat for Vim motion by character are the hjkl keys.
No matter what others say, the arrow keys are also a good fit in
many cases. Combined with the <fn> key on a Mac, for example,
this allows for both moving in all directions, and scrolling page up
or down. However, the hjkl combo remains useful if you want to
combine them with a quantifier, e.g. 5j to jump to the fifth line after
the current one, or >5j to indent the current line and the next 5 — or
if efficient touch typing and the home row keys work for you.

Basically, what I usually want to do is: move at the beginning or
end of current (physical) line – in Insert mode I use standard Emacs
keybindings C-a and C-e,3 jump to the previous or next word (but
this is generally to yank or delete this word), or to the previous
or next blank line (useful in text-mode and prog-mode). I also like
moving between opening and closing brackets or parenthesis. Finally,
I find it useful to quickly jump to a specific line number.

So basically, given the next snippet of text, I want to be able to
jump quickly to position A, B, C and D, or to select region delimited
by either two of these anchors. This basically amounts to jumping to
a specific word in a sentence, or the beginning or end of the sentence
itself. Let’s call it a line in this context.

https://stackoverflow.com/a/16226006

vim 101 4

4 Note that [and] are prefix operators,
much like z or g, in Doom Emacs. They
are generally used to navigate in the
buffer list, or to jump to the next or
previous error or Git hunk. See also
Table 3.

The quick brown fox jumps over the lazy dog.

^ ^ ^ ^

A B C D

There are more complex scenarios but I feel like these are the
most common jumps: A is the beginning of a sentence (or line), A–
B corresponds to moving to the beginning of the next word, A–C
is a jump to next word that start with a ’t’, and D is the end of the
sentence (or line), which means that A–D is akin to jumping from the
beginning to the end of the sentence. Common keybindings appear
in Table 2.4 Of note, Emacs offers a visual-line-mode which allows to
wrap words at the right edge of the window while redefining simple
editing commands to act on visual lines, not logical lines. This may
be confusing at first since $ will jump to the end of the current line,
but then j or k will jump to the beginning or end of the visual block,
not the previous or next visual line.

Keys Description
b move cursor to previous word
w move cursor to next word
0 Go to beginning of line
$ Go to end of line
gg Go to beginning of buffer
G Go to end of buffer
:X Go to line number X
f<char> Go to next occurrence of char on line
F<char> Go to previous occurrence of char on line
C-u Scroll to previous screen
C-d Scroll to next screen
o Toggle between beginning and ending of selection
% Toggle between beginning and ending of matching delimiters
(Jump to beginning of paragraph
) Jump to end of paragraph
{ Jump to next empty line
} Jump to previous empty line

Table 2: Basic shortcuts for motion in
visual mode

Selection

As seen above, motion does constitute the most important aspect of
Vim actions in Normal mode. Motion can also be used in conjunc-
tion with specific action, e.g. delete all the characters until the next
comma, or copy the text within the matching parenthesis. Let us
consider the same example as before:

The quick brown fox jumps over the lazy dog.

In Normal mode, to select the first word in the above example, yw
can be used when the cursor is set to the first character. If this is not

https://www.gnu.org/software/emacs/manual/html_node/emacs/Visual-Line-Mode.html

vim 101 5

5 In Vim, the cursor go back one charac-
ter back when exiting Insert mode. If
you don’t like it, in Emacs you can add
the following instruction in your config
file: (setq evil-move-cursor-back

nil).

the case, moving at the beginning of the visual line (0) will suffice
(see next section). To select the second word (’quick’), we would first
need to move the cursor to the first character, and then select the
word. We can use either one of these two instructions: wyw or fqyw.
To select ’jumps’ instead, we would use 4wyw or fjyw. When using the
f key to jump to the next occurrence of a <char>, don’t forget that we
can repeat such a jump by pressing ; as many times as needed.

Finally, the evil-easymotion package (in Emacs) or vim-easymotion
plugin (in Vim) will simplify a lot of this "jump-around" tasks, since
it will provide you with visual marks (alphabetical characters, or
ordered bigrams) that you just need to select using the keyboard:
For instance, if you’re looking for the next word that starts with the
"a" letter, instead of typing fa, you can just use the corresponding
easymotion shortcut which will highlight all "a" next to the cursor
position, and replace them with alphabetical letters; the first match
will be labelled "a", the second one "b", and so on. Then you just have
to type the letter you want to jump at its location.

To select the whole line, yy or y$ could be used instead if we
are at the beginning of the line. The instruction for yanking, y, can
be replaced with d, to delete, or c, to edit in place. On any given
character, r allow to switch to replace mode and to edit the character
under the cursor, as discussed above. Capital letter variants for y, c, d
and r do exist: They are used as a shorthand for y$ (not in all config),
c$ (see table 1), d$ and r$.

Most importantly, recall that unlike Emacs, the cursor is always
positioned on a character, and not in between. Also, this is often the
case that when we are at the end of a line in Insert mode (e.g., just
after the comma ending a sentence), switching back to Visual mode
brings us one character backward (i.e., on the comma itself).5

A simple alternative to yw is yiw (or yaw): these commands allow
to yank the current word excluding (or including) the surrounding
whitespaces. Also, yf<char> will yank from the current cursor posi-
tion up to and including the character <char>. See next section about
the f (or F) instruction. Technically, those kind of instructions imply
a motion (y{motion}), like iw (inside word). Unlike yw, yW will select
the whole object, including special character like -, # or ::. In the fol-
lowing Racket snippet, the cursor is on the first letter of the function
name, largest-prime-factor:

(require math)

(define (largest-prime-factor x)

^

(apply max (map car (factorize x))))

https://github.com/PythonNut/evil-easymotion
https://github.com/easymotion/vim-easymotion

vim 101 6

6 The first double quote allows to
access register values, and the second
double quote means that we want the
default register. The more general
syntax to yank text to a named register
is a single double quote followed by
\<char>y, where <char> is the name of
the register, usually a single letter [a-z].
To put the text in the system clipboard,
use the * register.

In this case, yw will only yank largest while yW will yank the full
function name. Using motion (see next section), we could also use y%

to yank the function name and its parameter, that is all text objects
occurring between the parenthesis. A similar effect can be obtained
with yi((yank inside parenthesis), of course. Strictly speaking, % is
used for motion: inside the brackets it will move the cursor to the
first brackets, while % on any of the two matching delimiters will
move the cursor from one to the other.

Copy, cut and paste do not involve the system clipboard (like
pbcopy and pbpaste on macOS) but Vim default register which
is denoted as a single double quote ("). In Insert mode, the last
object copied can be pasted using C-r " (this is the default value).
In Normal mode, we use ""p.6 As a final note, instead of pasting in
place (i.e., without moving the cursor afterwards), one may use gp

(paste after) or gP (paste before) to move the cursor after the pasted
object.

Objects

We have seen how to operate basic movements and actions on se-
lected regions. The last important concept in Vim is that of object.
The most common objects are w (or W) for words, s for sentences, p
for paragraphs, b for parenthesized blocks, " for quotes, as well as all
variations of brackets (rounded, squared, etc.).

As seen above, yw amounts to an action on a specific object, which
is a word, but could be anything else: a sentence, a paragraph or any
number of objects in between square brackets.

Advanced stuff

Motion using prefix operators

Keys Description
g; Goto last change
gˆ First non blank character
g0 Jump to beginning of visual line
gm Jump to middle of visual line
g$ Jump to end of visual line
gd Go to definition
gD Go to references
zz Scroll line to center (of screen)
zb Scroll line to bottom
zt Scroll line to top

Table 3: Motion shortcuts in visual
mode for Doom Emacs

The shortcuts listed in Table 3 are specific to Doom Emacs and
are usually mapped under the g or z prefix operator. There are also

vim 101 7

7 Here, s-<tab> means <shift> +

<tab>, not the hyper, meta, or alt key
commonly refered to as s in Doom
Emacs.

keybindings specific to prog-mode like gd or gD: they are mapped to
the corresponding xref-find-* functions unless the lsp package is
installed in which case they are associated to lsp-find-* functions.
Likewise, [l and]l in an Org buffer can be used to jump to the
previous or next link (in the EWW browser, it is just <tab> and
s-<tab>).7

The vim-wordmotion allows for further refinements in the case of
word motions.

Shortcuts in insert mode

Keys Description
C-h Delete the character before the cursor during insert mode
C-w Delete word before the cursor during insert mode
C-j Add new line during insert mode
C-t Indent line one shiftwidth during insert mode
C-d De-indent line one shiftwidth during insert mode
C-n Auto-complete next match before the cursor during insert mode
C-p Auto-complete previous match before the cursor during insert mode

Table 4: Motion shortcuts in insert
mode

Custom commands

The z prefix is used for folding: za and zc are used to open the fold
at point and to close all opened folds.

The z prefix is also used for spelling tasks: z= corrects word at
point, zg will add the word at point in the dictionary, and zw will
mark it at incorrect. Note that navigation is handled by]s and [s,
which are used to navigate to the next or previous mispelled word.
Finally, don’t forget that C-p allows to autocomplete the word at
point, which may be handy in some case.

Navigating the file system

Vim has a built-in file browser (netrw), but several plugins are avail-
able to browse files and directory. The most popular ones are prob-
ably NERDTree, vim-dirvish and defx, although vim-vinegar is also
a valid option since it provides some enhancements to netrw. It all
depends whether you need a nice sidebar showing all files and direc-
tories of the current project, possibly with Git status and nice icons
alongside. If this is not the case, then vim-dirvish or vim-vinegar
are more interesting options since they allow to manipule file paths
like in any Vim buffer.

When using vim-vinegar, the basic shortcuts are quite simple
to memorize: - allows to open netrw in the current directory, . ap-

https://emacs-lsp.github.io/lsp-mode/
https://github.com/chaoren/vim-wordmotion
https://github.com/preservim/nerdtree
https://github.com/justinmk/vim-dirvish
https://github.com/justinmk/vim-dirvish
https://github.com/tpope/vim-vinegar

vim 101 8

pend the file path to an ex command (:), and ~ go back to the home
directory.

References

Neil, Drew (2018). Modern Vim: Craft Your Development Environment
with Vim 8 and Neovim. The Pragmatic Bookshelf.

Robbins, Arnold and Linda Hannah Elbert adn Lamb (2008). Learning
the Vi and Vim editors. O’Reilly.

