
1 There are many other thing built in Org
mode, especially for ”getting things done”,
which motivated the original development
of Org, but I am not so much interested in
these aspects.

2  Note that the sniprun Neovim plugin
allows to run lines/blocs of code from
different languages, mimicking the inline
evaluation available in Emacs.

Aminimal Org setup to write scientific notebooks
April 2022

A bit of context first. As a matter of fact, I no longer use Emacs. I switched
to (Neo)vim a while ago now, since I found myself more comfortable editing
text in Vim than I ever was in Emacs. To be honest, I don’t really miss any
other fancy parts from Emacs operating system, except maybe the ability to
run REPL for multiple languages within a few clicks (actually, I used to use
C-c C-cmost of the times), and I really don’t miss the package dependencies
mess that occurred from time to time when upgrading everything. To tell
the truth I don’t have great requirements in terms of text editor, but I want a
responsive editor, which facilitates text manipulation and fuzzy search within
a few clicks.

However, Emacs is already installed on my machine, with the bare es-
sentials in 30 LOC of init.el, and Org is readily available from any decent
package manager on Linux distros. The following was written on not so recent
versions of Emacs (26.3) and Org mode (9.3.1). Also, I will focus on scientific
programming languages, namely R, Stata, Python and Mathematica. In the
past I used to use Org mode mostly for functional programming languages
(Scheme, Common Lisp and Clojure). For an overview of what Org is good
for, take a look at Emacs org-mode examples and cookbook.

Why Org

I tend to view Org as a three-fold utility. First, it is a very good markup lan-
guage, which also happens to be more clean and rich than Markdown. You
don’t need to worry about spaces for hard breaklines, there’s a verse environ-
ment, as well as todo and progress state indicators or even macros, and var-
ious other things that can be managed under the umbrella of the #+PROPERTY
element. Second, Org mode in Emacs comes with handy exporting facilities
(think of Pandoc, but built in Emacs directly). Third, Org introduced Babel
a while ago, which allows to evaluate code directly into an Emacs buffer or
when exporting.1 As such, this provides a way to do literate programming
right into your preferred text editor, even if it’s (Neo)vim! Of course, if you
do not work under Emacs, you lose the ability to evaluate chunks of code
right into Emacs, much like an interactive playground. However, you can still
evaluate the whole document and export it to HTML or PDF, much like if you
were sourcing the whole buffer in Emacs.2

The rationale is as follows: We could use general purpose tool like dexy or
noweb, or more specialized one (Sweave, knitr, pweave, staweave), use built-in
exporters (e.g., fromMathematica markup language), or all-in-one solution
in the browser as in Jupyter notebooks. I don’t really like working in my web
browser, and for what matters I don’t need a digital playground, but rather a
way to embed snippets of code and their outputs into my document.

https://github.com/michaelb/sniprun
https://orgmode.org/
http://ehneilsen.net/notebook/orgExamples/org-examples.html
https://github.com/fniessen/org-macros
https://pandoc.org/
https://orgmode.org/worg/org-contrib/babel/intro.html
https://www.dexy.it/
https://www.cs.tufts.edu/~nr/noweb/
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
https://yihui.org/knitr/
https://mpastell.com/pweave/
https://homepage.divms.uiowa.edu/~rlenth/StatWeave/


a minimal org setup to write scientific notebooks 2

3 See this post, Org in Vim, for example.
4 Besides syntax highlighting which is
provided by the venerable vim-orgmode
syntax file.

5 There may be better option, but even if
this Perl script is rather old, it still works
like a charm.

This is not a tutorial on Org, Org mode, or even Emacs. You will find
plenty of documentation on the Org site itself, as well as on blog posts or
GitHub. Also, keep in mind that this is written from the perspective of some-
one who works exclusively with Neovim. Although there are some plugins
that allow to reproduce part of the Emacs way of working with Org,3 we
assume no external plugins at all.4 At the time of this writing, the Neovim
orgmode plugin does not allow to evaluate code block. Its main focus seems
to be on the GTD side of Org, and it does it pretty well, in my own view. This
short note rather aims at describing what works for me, on my machine, when
it comes to writing Org documents as plain text. Beware that you will lose ev-
erything you get when working directly with Emacs: inline evaluation of code
block, management of references (labels, bibliographic entries, outline, among
others), the Org dispatcher which allows to select the exporting backend, and
so on. However, you will be able to export your plain text document with the
result of your source block pretty printed in your HTML or PDF output files.
All that in (Neo)vim. You’ll get the best of both worlds!

All editors suck, except Emacs and Vim. – Yours truly, circa 2020

How to write your Org documents

Languages

R and Stata should work right out of the box provided you installed the ESS
package. Things may be broken for Julia, though. It should be noted that Stata
version < 14 does not allow saving SVG or PNG image, which may limit your
ability to export images as easily as with other languages. The only option
for those who are on Stata 13 like me is to use imagemagick to post-process
images saved in Postscript format. The following oneliner shell script will do
the work:

for i in *.eps; do convert -density 300 -quality 85 "$i" "${i%%.*}.png"; done

Python and Mathematica require additional settings. For Python, you need
to point org-babel-python-command to the relevant Python you want to use,
otherwise it will pick the default python program available in your $PATH. If you
are using a virtual environment, or python3, then you likely want to update the
default settings. For Mathematica, you will need mash.pl,5 as described in the
following article: Using Mathematica with Orgmode.

Finally, languages need to be loaded for Org to properly works. This can be
done in Emacs config file as follows: (more on this in a later section)

(org-babel-do-load-languages
'org-babel-load-languages
'((R . t)

(python . t)

https://aliquote.org/post/org-in-vim/
https://github.com/jceb/vim-orgmode
https://orgmode.org/
https://github.com/nvim-orgmode/orgmode
https://ess.r-project.org/
https://imagemagick.org/
https://ai.eecs.umich.edu/people/dreeves/mash/
https://rgoswami.me/posts/org-mathematica/


a minimal org setup to write scientific notebooks 3

6 Example taken from Nicolas Rougier’s 100
numpy exercises.

7  You can do really crazy stuff with Org
source headers. For instance, you can
invoke imagemagick to post-process your
image files, define custom 𝐿A𝑇E𝑋 commands
that will be inserted conditional on the
exporting backend (with or without Org
macros). See the Org Babel reference card
to learn more.

(mathematica . t)
(stata . t)))

Basic source blocks

The Org website comes with nice tutorials. Read them, you will learn the basic
syntax for highlighting and delineating your text. Next comes the Babel aspect
of Org. Each chunk of code will read more or less like the following snippet:6

#+BEGIN_SRC python
import numpy as np
Z = np.zeros((10,10))
print("%d bytes" % (Z.size * Z.itemsize))
#+END_SRC

Everything between the #+BEGIN_SRC and #+END_SRC statements is pure
Python code, as indicated in the header, just after #+BEGIN_SRC. This is much
like Markdown fenced code blocks. Normally, such a code chunk can be
evaluated in Emacs by pressing C-c C-c, and a #+RESULTS block will be dis-
played right after the source code. The header arguments determine how code
should be processed and displayed. It can be global (i.e., valid for all code
chunks in the current buffer) or local (i.e., only for the current code chunk).
In the latter case, it is specified right after the language (here, python). Other-
wise, we can put a general statement at the beginning of the document, and
update header options on the go. Here is some header stuff that you probably
want to put at the top of your Org document:7

#+PROPERTY: header-args :cache no :exports both :results output :session

Source blocks evaluation

Here is a the same example again, but with both input (SRC) and output
(RESULTS) enabled:

import numpy as np
Z = np.zeros((10,10))
print("%d bytes" % (Z.size * Z.itemsize))

800 bytes

The results are wrapped up in a verbatim block, which shows up nicely
when using 𝐿A𝑇E𝑋 or HTML backend. The above was produced by passing
the following header options: :exports both :results output. If we only want
the code, and not the results (if any), we simply have to write :exports code.
In fact, there are five defaults options, for which default values are put in
parenthesis: :session (none), :results (replace), :exports (code), :cache (no),
:noweb (no). Instead of :exports code, we could also set :results silent. There

https://github.com/rougier/numpy-100
https://github.com/rougier/numpy-100
https://imagemagick.org/
https://org-babel.readthedocs.io/en/latest/eval/
https://orgmode.org/
https://www.orgmode.org/worg/org-contrib/babel/header-args.html


a minimal org setup to write scientific notebooks 4

Language Available options

R colnames, file, results, session, R-dev-args
Stata mostly the same as R
Python results, return, python, session, var, exports
Mathematica mostly the same as R
Shell results, session, var, noweb, tangle, stdin, cmdline, shebang

Table 1: Language-specific header argu-
ments

are also language-specific arguments, like :tangle. Available arguments are
detailed in Table 1.

For instance, Mathematica allows to display result as 𝐿A𝑇E𝑋 expression,
using a combination of TeXForm and :results raw. Another approach is to ask
for verbatim output, and post-process the RESULTS block. Alterantively, we can
simply ask for :results latex, as shown below:

D[2x^2 Exp[x^2/3], x] // TeXForm

4 e
𝑥2
3 𝑥 + 4

3
𝑒
𝑥2
3 𝑥3

We can also ask Mathematica to compute the n-th order Bose integral

𝐼𝑛 = ∫
∞

0

𝑥𝑛
𝑒𝑥 − 1𝑑𝑥

at 𝑛 = 1 (which actually is 𝜋2

6
):

Integrate[x/(Exp[x]-1),{x,0,Infinity}]

Pi^2/6

Table 2 summarizes the main options that are generally useful depending
on the language at hand.

Language Available options

R output, raw, table, html, latex
Stata output
Python output, value, table
Mathematica output, latex

Table 2: Common :results options avail-
able for each language

Org does not take care of formatting raw results, though, so care must
be taken when you have specific formatting requirements. The following
illustrate how we could possibly compute the factorial of 200 using Python.
Since the result is quite a big integer, it will overflow our text width, unless we
format the result ourselves:

import math
from textwrap import wrap
value = math.prod(range(1, 200))
print("\n".join(wrap(str(value))))

3943289336823952517761816069660925311475679888435866316473712666221797



a minimal org setup to write scientific notebooks 5

8 You can do more involved stuff using Dirk
Eddelbuettel’s little r script.

2498170167146015214200599231195208860606945981941512882139512131855253
0963312476414965556731428635381658618698494471961222810725832120127016
6459320656137141474266387621212037869516201606287027897843301130159520
8516203117585042939808946111139481185194868736000000000000000000000000
00000000000000000000000

Old good noweb

However, you could simply display the above code without the print state-
ment, and add an hidden block for displaying the result. Or you could store
the result in a variable and later display it. Or you could use the noweb ap-
proach. We will need to provide a name to the previous code block (say,
#+NAME: factorial), and then we can reuse the same code block later on, using
the following syntax:

#+BEGIN_SRC python :noweb yes
factorial()

#+END_SRC

Here is what we would get:

3943289336823952517761816069660925311475679888435866316473712666221797
2498170167146015214200599231195208860606945981941512882139512131855253
0963312476414965556731428635381658618698494471961222810725832120127016
6459320656137141474266387621212037869516201606287027897843301130159520
8516203117585042939808946111139481185194868736000000000000000000000000
00000000000000000000000

Calling the shell

Sometimes it is easier to use the shell directly. For this to work, we also need
to add shell to our list of Babel languages:

(org-babel-do-load-languages
'org-babel-load-languages
'( ...

(shell . t)
...

))

Note that we use the keyword shell, but in source block this should be
replaced by any valid shell available on your system (e.g., bash, sh, zsh). Using
a shell allows to call a compiled program directly, to preprocess data using Sed
or Awk, and so on. And of course, nothing prevents you from calling your
preferred program from a shell directly as illustrated below:8

https://eddelbuettel.github.io/littler/
https://orgmode.org/manual/Noweb-Reference-Syntax.html


a minimal org setup to write scientific notebooks 6

Rscript -e 'summary(rnorm(100))'

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.25073 -0.64850 -0.10801 -0.01645 0.57676 2.67609

Advanced usage

We can do a little better in this case and ask to return a formatted table, using
a dedicated package and :results raw:

library(ascii)
r < summary(rnorm(100))
print(ascii(r, include.rownames = FALSE), type = "org")

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.91 -0.63 -0.07 -0.01 0.68 2.68

The article R Source Code Blocks in Org Mode provides further examples.
Other R packages allow to export in HTML (e.g., xtable) or 𝐿A𝑇E𝑋 (e.g., Hmisc).
Similar options do exist for Python and Pandas, e.g., Get pandas data-frame
as a table in org-babel. Here are two approaches to embed graphical output
in an Org document. First off, here’s some Mathematica where we explicitely
save the image before printing it, using :results file. Note that we did not
export the result for this snippet, but the image is written as assets/org-
setup-sine.png so that it can be printed anywhere in the document, e.g., in the
margin, and customized at will (e.g., by adding a caption).

p = Plot[Sin[x], {x, 0, 6 Pi}, Frame >True];
Export["assets/org-setup-sine.png", p];
Print["assets/org-setup-sine.png"]

And here is some R code, where ask for a direct graphical output using a
specific filename (:file assets/org-setup-bwt.png :results graphics file).
Two things to note: we specify the header option in a separate directive, using
#+HEADER:, and we wrote the R scipt in a separate file (org-setup-ggplot.r) that
is included as is using the #+INCLUDE: directive. This directive allows to include
any external files into an Org master file, and it is often used for multi-chapter
document. However, since we can specify the type of block that will hold the
file content, it provides an easy way to embed any kind of code and to keep
them seperated without having to tangle them. Together with the shell option
discussed in the previous section, it also provides a cheap way to include
Scheme or Lisp code and to evaluate code chunk using an interpreter or a
compiler.

## Little R script that comes along org-setup.org
## http://aliquote.org/articles/notebooks/org-setup.pdf
## Time-stamp: <2022-04-29 21:55:38 chl>

https://orgmode.org/worg/org-contrib/babel/languages/ob-doc-R.html
https://emacs.stackexchange.com/q/28715
https://emacs.stackexchange.com/q/28715
file:///scripts/org-setup-ggplot.r
https://orgmode.org/manual/Include-Files.html
https://orgmode.org/manual/Extracting-Source-Code.html


a minimal org setup to write scientific notebooks 7

library(ggplot2)
library(directlabels)

theme_set(theme_minimal())

data(birthwt, package = "MASS")

birthwt$lwt < birthwt$lwt * 0.45
birthwt$race < factor(birthwt$race, levels = 1:3, labels = c("white", "black", "other"))

fm < low ~ lwt + race
m < glm(fm, data = birthwt, family = binomial)

d < expand.grid(lwt = seq(40, 100), race = factor(levels(birthwt$race)))
d$yhat < predict(m, d, type = "response")

p < ggplot(data = d, aes(x = lwt, y = yhat, color = race)) +
geom_line(aes(group = race), size = 1) +
scale_color_brewer(palette = "Set2") +
guides(color = FALSE) +
labs(x = "Mother weight (kg)", y = "Pr(low = 1)", caption = "Predicted response curves")

direct.label(p + aes(label = race), method = "smart.grid")



a minimal org setup to write scientific notebooks 8

9 Everyone’s using a Makefile, right?

Wrapping up

The above sections only showed what’s possible with Org using minimal con-
figuration and settings. A lot more can be done. Again, browse the Org web-
site and the internet at large, Google if you really need it. What we learned
so far is that the :results header argument control many aspects of what is
exported and how it may be displayed in the subsequent output. Your options
here will depend on the exporting backend itself. If you use PDF via 𝐿A𝑇E𝑋 ,
almost everything is possible and you’ll get nice tables. Relying on the shell
may be interesting in many occasions. Although we only dealed with main-
stream scientific programming languages, other data-oriented languages are
available, like SQLite.

How to process your Org documents

Local and global setup

There are two options to export your Org document. Either you reuse your
own Emacs configuration, or you write one from scratch. The latter is useful
in case you want to maintain separate configuration for each project, while
the former is the easy way to go. Here is what you could put in a file named
setup.el:

(load (expand-file-name "init.el" user-emacs-directory))
(require 'org)
(load "ox-bibtex.el")

The above instructions load your whole Emacs config, via init.el in the
user Emacs directory. In your Makefile,9 you then invoke Emacs like this:

%.html: %.org
emacs --batch -l setup.el $< -f org-html-export-to-html --kill

If, on the other hand, you prefer to write custom settings for each project
directory, then there’s a little more work involved. First, you will need to
import the relevant Emacs package and load the appropriate languages. This
can be done as follows (again we assume everything is stored in a file named
setup.org):

(require 'org)
(require 'ess-site)
(require 'ess-stata-mode)
(require 'ox-bibtex)

(org-babel-do-load-languages
'org-babel-load-languages
'((R . t)

https://orgmode.org/
https://orgmode.org/worg/org-contrib/babel/languages/ob-doc-sqlite.html


a minimal org setup to write scientific notebooks 9

10 In this configuration, I assume that
the program stata is available in your
$PATH. Usually, one of the many versions
of Stata (SE, MP, IC) is symlinked into
/usr/local/bin or /usr/local/stataXX/, where
XX stands for Stata version number, as stata-
se or stata-mp. Sometimes, an additional
symlink, stata > stata-[(mp|se)], is
automatically created (by the install script
or via Stata GUI). This PR assumes that
such a link does exist, otherwise it has
to be created by the user under his $HOME
directory or in system-wide $PATH.

(python . t)
(mathematica . t)
(stata . t)))

(setq ess-ask-for-ess-directory nil)
(setq inferior-R-program-name "/usr/bin/R"

org-babel-python-command "/usr/bin/python3"
org-babel-mathematica-command "~/bin/mash"
mathematica-command-line "~//bin/mash"
inferior-R-args "-q --no-save --no-restore")

There’s a bunch of default options that you can specify into your config
file. For instance, you can ask to add the :session flag automatically for all
R source blocks (apart form the global header option, we can add language-
specific buffer settings).10 The ox-bibtex package is only required if you need
to manage your bibliographic entries (this requires bibtex2html for the HTML
exporting backend).

Wrapping up everything in a shell script

If you are going to use this approach everyday, you are better off writing a
little shell script to perform all the work. Here is a simplified illustration:

#!/usr/bin/env bash

OPT=$1
FILE=$2

ELISP="/home/chl/Documents/notes/assets/org-babel.el"

case $OPT in
-pdf)
emacs --batch -l "$ELISP" --eval "(progn (find-file \"$FILE\") (org-latex-export-
to-pdf))"
;;
-html)
emacs --batch -l "$ELISP" --eval "(progn (find-file \"$FILE\") (org-html-export-
to-html))"
;;
*)
echo "Unknown export format."
;;
esac

https://github.com/acla/bibtex2html

