
Managing graphics with R
May 2019

R offers two main graphical systems: base and grid. The latter is exposed in
two core packages: lattice and ggplot2. We will use the later, which relies on
the idea of a ”Grammar of Graphics” [2].

suppressPackageStartupMessages(library(ggplot2))
theme_set(theme_bw())

The above instructions allow to load the required package and to set a
default theme. They are meant to be run only once, when R is started for the
current session. However, it is still possible to change the theme at any time,
or inline when building a custom graphical display.

Let’s look at a random sample of the GSOEP dataset available in data/gsoep09.dta.
This is a Stata file built upon the German Socio Economic Survey from 2009.
Note that these data come with survey weights (dweight and xweights) but we
will proceed as if it was a cross-sectional sample. The foreign package allows
to read Stata files (up to Stata 12 version), but it is more convenient to use the
haven package. The read_dta function will return a ”tibble”, which is like an
ordinary data frame but with extra properties that we won’t exploit in this
tutorial.

library(haven)
d <᫲ read_dta("data/gsoep09.dta")
head(as.data.frame(d))

persnr hhnr2009 state ybirth sex mar edu yedu voc emp egp income hhinc hhsize hhsize0to14
1 8501 85 5 1932 1 1 1 10.0 1 5 18 NA 22093 2 0
2 8502 85 5 1939 2 1 1 8.7 NA(b) 5 18 NA 22093 2 0
3 15001 150 5 1946 1 1 1 10.0 1 5 18 0 62078 2 0
4 15002 150 5 1953 2 1 1 10.0 1 2 2 19955 62078 2 0
5 18201 111373 12 1969 1 4 2 12.0 2 1 4 35498 24578 1 0
6 18202 182 12 1946 2 1 4 15.0 2 5 18 NA 33401 2 0

rel2head ymove ybuild condit dsat size seval rooms renttype rent reval eqphea eqpter eqpbas
1 1 1976 4 1 9 2046 4 10 1 NA NA(a) 1 1 1
2 2 1976 4 1 9 2045 4 10 1 NA NA(a) 1 1 1
3 1 1972 4 1 8 907 3 3 2 508 NA(a) 1 1 1
4 2 1972 4 1 9 900 3 3 2 530 NA(a) 1 1 1
5 1 2002 NA(a) 1 9 1292 3 4 1 NA NA(a) 1 2 1
6 1 2002 NA(a) 1 8 866 3 3 1 NA NA(a) 1 2 1
eqpgar eqpalm eqpsol eqpair eqplif eqpnrj hhtyp area1 area2 dvisits heval hsat polint pia pib

1 1 2 2 1 2 1 2 2 1 20 5 2 1 1 5
2 1 2 2 1 2 1 2 2 1 24 4 2 3 1 5

data/gsoep09.dta
https://www.eui.eu/Research/Library/ResearchGuides/Economics/Statistics/DataPortal/GSOEP

managing graphics with r 2

3 1 2 2 2 2 2 2 4 2 12 3 5 3 1 NA
4 1 2 2 2 2 2 2 4 2 8 2 6 3 1 1
5 2 2 2 2 2 2 1 1 1 12 2 8 4 2 NA
6 2 2 2 2 2 2 2 1 1 12 3 7 4 2 NA

pic lsat wor01 wor02 wor03 wor04 wor05 wor06 wor07 wor08 wor09 wor10 wor11 wor12 sample intnr
1 1 8 1 2 1 1 1 1 2 1 1 3 1 NA(b) 6 18
2 2 8 1 2 1 1 1 1 2 1 1 3 1 NA(b) 6 18
3 NA(b) 8 2 2 2 1 2 2 2 2 1 2 2 NA(b) 1 40
4 3 8 1 2 2 2 2 2 2 2 2 2 2 3 1 40
5 NA(b) 7 2 2 2 2 2 2 2 1 2 1 2 1 3 60
6 NA(b) 6 1 1 1 1 1 2 1 1 1 1 1 NA(b) 3 60
hhnr strata psu dweight xweights

1 85 601 601367 13569.429 5808.710
2 85 601 601367 13569.429 5283.054
3 150 101 101190 12894.620 11958.257
4 150 101 101190 12894.620 12114.272
5 182 301 301021 7326.489 4709.853
6 182 301 301021 7326.489 4929.223

1 Data preprocessing

We will first subset the data frame by selecting only a dozen of variables, and
then draw a random sample of 10% of the original dataset. Specifically, the
variables we are interested in are described below:

• persnr: respondant ID

• hhnr2009: household ID

• ybirth: year of birth

• sex: sex of respondant

• mar: marital status

• egp: socio-economic class

• yedu: no. years of education

• income: annual income (€)

• rel2head: position of respondant relative to household

• wor01 to wor12: 3-point Likert answers to socio-economic and political
questions

vars <᫲ c("persnr", "hhnr2009", "ybirth", "sex", "mar", "egp", "yedu", "income", "rel2head",
"wor01", "wor02", "wor03", "wor04", "wor05", "wor06", "wor07", "wor08", "wor09", "wor10", "wor11", "wor12")

set.seed(101)

managing graphics with r 3

idx <᫲ sample(1:nrow(d), floor(nrow(d)*.1))
d <᫲ subset(d[idx,], select = vars)
dim(d)

[1] 541 21

The next step consists in re-encoding categorical variables and computing
auxiliary variables:

d$persnr <᫲ factor(d$persnr)
d$hhnr2009 <᫲ factor(d$hhnr2009)
d$sex <᫲ droplevels(as_factor(d$sex))
d$mar <᫲ droplevels(as_factor(d$mar))
d$egp <᫲ droplevels(as_factor(d$egp))
d$rel2head <᫲ droplevels(as_factor(d$rel2head))
d$age <᫲ 2009 - d$ybirth

Let us now look at the above variables, and recode some of mar and egp cat-
egories: (For simplicity, we will discard all refusals from the present dataset.)

table(d$mar)
levels(d$mar)[3:5] <᫲ "Single"
d$mar[d$mar ᫁᫂ "Refusal"] <᫲ NA
d$mar <᫲ droplevels(d$mar)
table(d$mar)

Married Single Widowed Divorced Separated
293 143 50 43 12

Married Single
293 248

table(d$egp)
levels(d$egp)[1:2] <᫲ "High"
levels(d$egp)[2:4] <᫲ "Mid"
levels(d$egp)[3:4] <᫲ "Low"
levels(d$egp)[4:6] <᫲ "None"
d$egp[d$egp ᫁᫂ "Refusal"] <᫲ NA
d$egp <᫲ droplevels(d$egp)
table(d$egp)

Service class 1 Service class 2
36 72

Higher routine non-manuals Lower routine non-manuals

managing graphics with r 4

29 33
Self-Employed Skilled manual workers

25 40
Semi- and unskilled manual workers unemployed

60 27
Retired Does not apply

154 62
Refusal

3

High Mid Low None
108 87 100 243

Finally, let us only keep individuals with available income, and no missing
value on mar or egp:

d <᫲ subset(d, income > 0 & !is.na(mar) & !is.na(egp))
d$logincome <᫲ log(d$income)
dim(d)

[1] 336 23

2 The ggplot philosophy

In the spirit of the Grammar of Graphics developped by Leland Wilkinson,
the ggplot2 library uses a system of layers where graphical elements are joined
altogether in a coherent way.

Figure 1: The Grammar of Graphics
principles

The following elements are usually found, in more or less the following
order:

• ggplot(): a data frame (data=) together with a mapping (aes())

• geom_*(): one or more geometrical objects

https://ggplot2.tidyverse.org/

managing graphics with r 5

• facet_wrap(): a system of facets (used for conditioning on additional vari-
ables)

• scale_*_*(): a custom scale for each axis and color schemes

• coord_*(): a coordinate system

• labs(): some annotations for axes and other graphical properties

• theme_*(): a custom theme

Basically, we start by indicating the data frame in which the variables can
be found (data =), and what role these variables play in the plot (aes(x, y=,
color=)=). Two numerical variables can be used to code the spatial location of
a point in a 2D space, while a categorical variable could be used to highligtht
those points using color values mapped onto variable levels. The type of
graphical object we wan to draw (geom_point(), geom_histogram()) depends
on the number and the type of variables available in the aes()mapping. If
there’s only one numeric variable, we cannot draw a scatterplot, of course, but
we can build an histogram, for example. Note that a single plot can contain
multiple geometrical object, e.g. a scatterplot and a scatterplot smoother
(lowess curve). Each plot can be customized in several ways, but most of the
time we may be interested in updating the axes or the object properties (e.g.,
scale_x_continuous(), scale_color_manual()), and the labels or the title/subtitle
(labs()).

The most up to date documentation is available on-line in Winston Chang’s
R Graphics Cookbook [1].

2.1 Illustration of the layered approach

A very basic plot can be thought of as a succession of layers. In the example
below, we first draw a scatterplot using variable lwt (on the x-axis) and bwt
(on the y-axis) from the MASSᩪᩫbirthwt dataset, and then add a scatterplot
smoother (a lowess curve, with default smoothing parameters) on top of the
scatterplot:

p <᫲ ggplot() +
layer(data = MASSᩪᩫbirthwt,

stat = "identity",
geom = "point",
mapping = aes(x = lwt, y = bwt),
position = "identity") +

layer(data = MASSᩪᩫbirthwt,
stat = "smooth",
geom = "line",
mapping = aes(x = lwt, y = bwt),
position = "identity",
params = list(method = "auto"))

https://r-graphics.org/

managing graphics with r 6

Here is the simplified version using the approach described above:

library(MASS)
p <᫲ ggplot(data = birthwt, aes(x = lwt, y = bwt))
p + geom_point() + geom_smooth(method = "auto")

This follows the same principled approach: You add each graphical piece
together using the + operateur – which is specific to ggplot2 – and you print
the final graphical object to the graphical device. This is the reason why we
don’t use any assignment operateur (<᫲) in the last expression. It would be
possible to write the following expression:

ggplot(data = birthwt, aes(x = lwt, y = bwt)) + geom_point() + geom_smooth(method = "auto")

However, it is better practice to save the graphical commands in a variable,
and even to accumulate (+) the instructions as they go along since this allows
to build the final plot in an incremental way.

3 Exploratory analysis

3.1 Histogram and density estimators

Histogram and density curve are two common estimators for the distribution
of a continuous random variable. They do indeed have their counterparts in
ggplot2, namely geom_histogram and geom_density, although in the latter case it

managing graphics with r 7

is also possible to use geom_line using the a density estimator that ggplot2 will
compute for us. Here are two examples of use:

p <᫲ ggplot(data = d, aes(x = age)) +
geom_histogram(binwidth = 5) +
labs(x = "Age", y = "Counts")

p

p <᫲ ggplot(data = d, aes(x = age)) +
geom_line(stat = "density") +
labs(x = "Age", y = "Density")

p

managing graphics with r 8

The syntax is almost identical in both case, pending the options specific to
each geometrical object: In the case of geom_histogram, it is possible to indicate
the size (binwidth) or the number (bins) of intervals to use when discretizing
the continuous variable x; with the density estimator, we can specify the size of
the smoothing window (bw or adjust) and/or the kernel (kernel).

3.2 Boxplots

Boxplots can be used to visually depict the output of the summary function,
that is a five-number summary of the distribution of a numerical variable (lo-
cation, shape and range). It is most useful when there are several distributions
to plot side by side, hence the use of x and y in the mapping below:

p <᫲ ggplot(data = d, aes(x = mar, y = logincome)) +
geom_boxplot() +
labs(x = "Marital Status", y = "Annual Income (log)") +
coord_flip()

p

managing graphics with r 9

3.3 Barplots

Let us summarize the distribution of average (log) income across socio-
economic classes. First, we need to compute the mean and standard deviation
of logincome for each level of egp. This is easily performed using aggregate (or
tapply):

egp_stats <᫲ aggregate(logincome ~ egp, data = d, mean)
egp_stats$sd <᫲ aggregate(logincome ~ egp, data = d, sd)$logincome
names(egp_stats)[2] <᫲ "mean"
egp_stats

egp mean sd
1 High 10.210198 0.9861072
2 Mid 9.831354 0.9518870
3 Low 9.601578 0.9659040
4 None 8.621649 1.3534442

Unfortunately, aggregate returns a data frame with only one column for
the computed results (named after the variable that appears in the LHS), no
matter if the function returns a single valued vector or multivariate vectors.
Hence, we are forced to extract the result computed with the second call
to aggregate and append it as a distinct column. It is then possible to use a
combination of geom_bar and geom_errorbar to produce the desired result:

managing graphics with r 10

p <᫲ ggplot(data = egp_stats, aes(x = egp, y = mean)) +
geom_bar(stat = "identity") +
geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd), width = .2, col = "black") +
labs(x = "Socio-Economic Status", y = "Average income (log)")

p

Here is another example using two variables in the RHS, egp and sex:

egp_stats <᫲ aggregate(logincome ~ egp, data = d, mean)
egp_stats <᫲ aggregate(logincome ~ egp + sex, data = d, mean)
egp_stats$sd <᫲ aggregate(logincome ~ egp + sex, data = d, sd)$logincome
names(egp_stats)[3] <᫲ "mean"

p <᫲ ggplot(data = egp_stats, aes(x = egp, y = mean, fill = sex)) +
geom_bar(stat = "identity", position = position_dodge()) +
geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd), width = .2, col = "black", position = position_dodge(.9)) +
scale_fill_manual("", values = c("cornflowerblue", "darkorange")) +
labs(x = "Socio-Economic Status", y = "Average income (log)")

p

managing graphics with r 11

3.4 Scatterplots

Scatterplot are a common way to display the joint variation of two series of
observations, specified as x and y coordinates in a 2D plan. A scatterplot
smoother, e.g. a lowess (or loess) curve, can be superimposed on the scatter-
plot to help in gauging local deviation to the linear relationship assumption
commonly found in linear regression. In addition to the x and y variables, it
is also possible to ask ggplot2 to highlight point using a color that depends on
the level of a third categorical variable. This is controlled in the aesthetic di-
rectly. When we are not happy with the default color scheme, we can provide
our own values (RGB, HEX or named colors) using a ”manual” scale, which
targets an existing aesthetic. Finally, facet_grid or facet_wrap can be used to
build a treillis graphic, meaning that the overall plot is subsetted according to
the facet defined in this specific instruction. Here is a full working example in
action:

p <᫲ ggplot(data = subset(d, egp ᫏᫂ "None"), aes(x = age, y = logincome, color = sex)) +
geom_point(alpha = 0.5) +
geom_smooth(method = "loess", se = FALSE, span = 1.5) +
scale_color_manual("", values = c("cornflowerblue", "darkorange")) +
facet_grid(mar ~ egp) +
labs(x = "Age", y = "Average income (log)")

p

managing graphics with r 12

References

[1] Winston Chang. R Graphics Cookbook. Sebastopol, CA: O’Reilly Media,
Inc., 2013.

[2] Leland Wilkinson.The Grammar of Graphics. Springer, 2005. isbn:
0-387-24544-8.

managing graphics with r 13

Contents

1 Data preprocessing 2

2 The ggplot philosophy 4

2.1 Illustration of the layered approach 5

3 Exploratory analysis 6

3.1 Histogram and density estimators 6

3.2 Boxplots 8

3.3 Barplots 9

3.4 Scatterplots 11

	Data preprocessing
	The ggplot philosophy
	Exploratory analysis

