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Foreword

These notes are based on lectures given by David Clayton (Florence,
2005). Back in 2009, I spent two full years working on statistical
genetics and genome-wide association studies (GWAS). I read a lot
of material on statistical and genetic epidemiology, Bioconductor,
and related stuff. Among the statistical literature, there were a few
books on genetic epidemiology and biostatistics, the latter focusing on
the analysis of bioarrays essentially. The Lancet hasn’t published its
series on statistical analysis of GWAS yet. Finally, the most interesting
material I found were handouts written by David Clayton, who I met
at a conference some years later. His other publications were always
inspiring, but I found his lecture notes on epidemiological genetics
enlightning in many respects. Since they vanished from the interweb,
I made a quick one-shot handout for my own memory.

Other interesting materials in population genetics and evolutionary
models are given below:

• Notes on Population Genetics (GitHub)

• Lecture Notes on Computational and Mathematical Population
Genetics

• Applied Population Genetics

https://cooplab.github.io/popgen-notes/
https://github.com/cooplab/popgen-notes
https://github.com/popgenmethods/lecture_notes
https://github.com/popgenmethods/lecture_notes
https://dyerlab.github.io/applied_population_genetics/index.html
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The basis of genetics

Overview

Genetics is the study of traits or factors in plants, animals or humans
that are heritable. It has long been believed that inheritance was a
blending of parental characteristics, and Mendel developed a theory
in which this mechanism involves random transmission of ”discrete
units of information” called genes. This theory assumes two essential
hypotheses: (1) when a parent passes one of two copies of a gene to its
offspring, these are transmitted with probability 1/2, and (2) different
genes are inherited independently of one another. The later point was
erroneous.

A genes corresponds to a sequence of DNA, which is composed of
strings of bases, and we distinguish four nucleotide bases denoted A,
T, G and C. The two strands of DNA in the double helix structure are
complementary (we talk about the sense and anti-sense strands): A
binds with T, and G binds with C. Additionally, 3-base sequences, also
known as codons, code for amino acids and sequences of amino acids
form proteins. Even if a gene codes for a protein, it also has sections
concerned with the expression and regulation of genes, and RNA
processing.

Figure 1: From gene to protein

Mutations and polymorphisms occur in genomes. The process
of mutation describes the way new variants of a gene arise, while
as a noun we use mutation to describe a rare variant of gene. Poly-
morphisms are more common variants, since most mutations will
disappear but some will achieve higher frequencies due either to ran-
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dom genetic drift or to selective pressure. The most common forms of
variants are:

• repeated sequences of 2, 3 or 4 nucleotides (microsatellites)

• single nucleotide polymorphisms (SNPs) in which one ”letter” of
the code is altered

• exonic SNPs may or may not cause an amino acid change

The human genome consists of about 3 × 109 base pairs and contains
about 25, 000 genes. Much of the DNA is either in introns or in intra-
genic regions. Cells containing two copies of each chromosome are
called diploid (most human cells). Cells that contain a single copy are
called haploid. Humans have 23 pairs of chromosomes – 22 autosomal
pairs and one pair of sex chromosomes. Females have two copies of
the X chromosomes while males have one X and one Y chromosome.

All chromosomes have a stretch of repetitive DNA called the cen-
tromere. This plays an important role in chromosomal duplication
before cell division. If the centromere is located at the extreme end
of the chromosome, that chromosome is called acrocentric. If the cen-
tromere is in the middle of the chromosome, it is termed metacentric.
The ends of the chromosomes that are not centrometric are called
telomeres.

Are males at a disadvantage due to less gene product (for the
hundreds of genes on the X chromosome)? In fact, females only have
one active copy, the other being switched off during early embryonic
development. This phenomenon of X-inactivation appears to be
random: with very few exceptions, it cannot be predicted whether the
paternal or maternal copies are inactivated in a given cell.

According to Mendelian transmission, one copy of each gene is
inherited from the mother and one from the father – the two copies
need not be identical. Mendel postulated that mother and father
each pass one of their two copies of each gene independently and
at random. Thus if, at a given locus, the father carries alleles a and b
and the mother carries c and d, the offspring may be a/c, a/d, b/c or
b/d – each with probability 1/4. However, transmission of genes at
two different positions, or loci, on the same chromosome may not be
independent. If not, they are said to be linked.

A collection of linked loci (i.e., loci that tend to be inherited to-
gether) is called a haplotype. Immediately before the cell division that
leads to gametes, parts of the homologous chromosomes may be ex-
changed. An individual with haplotypes A − B and a − b may produce
gametes A − B and a − b, or A − b and a − B. This process is called
recombination. The probability of recombination during meiosis is
termed the recombination fraction, and is usually denoted by θ.
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Figure 2: The human genome

What has been described historically, and above, as recombination
should, more properly, be called cross-over. Although cross-over is
indeeed caused by breaking and rejoining of chromosomes, they more
often rejoin nearly the same way around. Often a short segment of
DNA (< 50 base pairs) is exchanged. This is known as gene conver-
sion.

The greater the physical distance between the two loci, the more
likely it is that there will be recombination – it is this which allows
mapping of genes. A simplified model is that loci can be arranged
along a line in such a way that at each meiosis, recombinations occur
at a constant rate. Then genetic distances are as shown in the margin
Figure.

In the simplest model, the relationship between recombination
frequency and genetic distance is given by Haldane’s map function:

DAB = −1
2

loge(1 − 2θAB).

The unit of genetic distance is called a Morgan. At each meiosis the
expected number of recombinations is, by definition, one per Morgan.
On average, 1 cM corresponds to about 106 bases. The total length of
the human genome is 33 Morgans (≈ 3 × 109 bases). In practice, things
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are more complicated:

• ”interference”: the model of independence of recombinations does
not fit – it predicts too many recombinations close together

• ”hot spots”: uneven relationship between physical and genetic
distances

• sex differences: recombination more frequent in females

A genetic locus is polymorphic if it can exit in different forms
(alleles). Genetic variation arises in a number of ways: insertions,
deletions, single nucleotide polymorphisms (SNPs), tandem repeat se-
quences, copy number polymorphisms. Polymorphisms are created by
random mutations within the DNA sequence. Many polymorphisms
have no functional consequence, but can be used to build framework
maps of the chromosomes. Some tandem repeat markers may have 20
or more distinct alleles, but SNP’s are (almost always) diallelic.

Because human cells are diploid, there are two alleles at each
genetic locus. This pair of alleles is called the individual’s genotype
at that locus. This pair of alleles is called the individual’s genotype
at that locus. If the two alleles are the same, the individual is said to
be homozygous at the locus. If they are different, he/she is said to
be heterozygous. The heterozygosity of a marker is defined as the
probability that two alleles chose at random are different. If πi is the
(relative) frequency of the $i$-th allele,

Heterozygosity = 1 − ∑
i

π2
i .

If alleles i and j have relative frequencies πi and πj, then, under
random mating, the genotype frequencies are

Pr(i/j) = 2πiπj (i ̸= j)

Pr(i/i) = π2
i .

This is termed Hardy-Weinberg equilibrium (HWE). Even if geno-
type frequencies are not initially in HWE, they will return to HWE
in a single generation of random mating. Deviation from HWE indi-
cates population stratification and/or admixture – or (more likely)
genotyping errors.

The phenotype is the characteristic (e.g. eye colour) that results
from having a specific genotype. Often we require probability models
to describe phenotypic expression of genotypes. Probabilities of
phenotype conditional upon genotype are called penetrances. In
many cases, the same phenotype can result from a variety of different
genotypes (sometimes termes phenocopies). Equally, the same gene
may have several different phenotypic manifestations (plieotrophy).
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If a single copy of an allele results in the same phenotype as two
copies irrespective of the second allele, the allele is said to be domi-
nant over the second allele. Likewise, an allele which must occur in
both copies of the gene to yield the phenotype is termed recessive.
Alleles which correspond to mutations which destroy the coding of
a protein tend to be recessive. If the phenotype for genotype i/j is
intermediate between the phenotypes for i/j and j/j, the alleles i and
j are codominant.

When a phenotype is controlled by two genes tere may be epistasis.
This was originally defined to mean that the genotype at one locus
masks the phenotypic expression of the other. The term is often used
quite loosely for a complex ”interaction” between two genes or, as we
shall see, rather precisely in a mathematical sense.

Example: Dominance, epistasis, and blood groups: The ABO locus
has three alleles. The A and B alleles are codominant, while O is re-
cessive: A must be present for A enzyme to be produced; B must be
present for B enzyme to be produced; if neither is present (O/O geno-
type, neither enzyme is produced. A further locus controls production
of a precursor antigen, H. The A and B enzymes act on this to produce
the A and B antigens: Subjects who are h/h produce no H antigen –
this is the ”Bombay phenotype” – such subjects are indistinguishabel
from O/O subjects. So, two parents who are phenotypically type O
and type B respectively can produce a type AB offspring.

Introduction to mathematical population genetics

The geneic architecture of today’s populations has been shaped by a
history of random mutation and recombination. The stochastic history
of mutations shapes the frequency spectrum of variants – this is a
source of much current controversy in genetic epidemiology. The
stochastic history of recombinations shapes the patterns of linkage
disequilibrium (LD) – crucially important in the design of genetic
association studies.

Let pi denote the relative frequency of a given variant in a popula-
tion of Nt chromosomes in generation t. The chromosome population
in generation (t + 1) is generated by drawing a sample of Nt+1 chro-
mosomes with replacement from the Nt chromosomes in generation t.
Allele frequencies ”drift” randomly – but very slowly when Nt is large.
To make the model realistic, Nt must be interpreted as the effective
population size – much smaller than the true population size.

Figure 3 show the history of n = 7 chromosomes at a single site.
The rate of colaescences is proportional to number of pairs, (n(n +

1)/2, and inversely proportional to effective population size Nt.
Most mutations are recent and have low frequency. Such consider-
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Figure 3: The coalescent model

ations have led some to believe that complex disease with a heritable
component will be influenced by very many, individually rare, genetic
variants. These would be difficult to detect in epidemiological studies.
Simple models are complicated by effects of selection and of bottle-
necks – reduction of population to a very small number followed by
rapid expansion. These models can be extended to describe spectrum
of multiple polymorphisms within a chromosome section, allowing
for recombination between sites.
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Segregation of traits in families

We shall consider a trait Y which, for now, is quantitative. The vari-
ance of the trait is the mean squared deviation of Y from the popula-
tion mean, Ȳ:

Variance(Y) = Mean{(Y − Ȳ)2}

The covariance of the trait between two subjects is the mean of the
products of their deviations from the population mean:

Covariance(Y) = Mean{(Y1 − Ȳ)× (Y2 − Ȳ)}

The correlation coefficient is the covariance scaled to lie between
−1 and +1 by dividing by the trait variance.

Imagine individuals in a population sorted into groups so that,
within each group, individuals are genetically identical at all loci rele-
vant to a trait of interest. The environmental component of variance is
the variance between trait values for subkects with the same genotype
(i.e. the within-group variance). The genetic component of variance
is the difference between this and the total variance (i.e. the between-
group variance). It is also equal to the covariance between trait values
in genetically identical individuals. The heritability of the trait is the
ratio of genetic variance to the total variance.

Interpretation: because it is a ratio we must be careful about in-
terpreting heritability as measuring the ”importance” of genetic
influences. But substantial heritability points to an ”experiment of
nature” which genetic epidmiologists can exploit.

Estimation: the definition is in terms of a ”thought experiment”.
Real opportunities are scarce:

• Twin studies: compare trait correlations for monozygotic and for
dizygotic twins

• Adoptee studies: compare traits correlation for true sibs and for
adoptees

• More general family studies: we can infer heritability using co-
variance structure analysis – but we rely heavily on mathematical
models.

At the heart of this argument is an analysis of variance (Fisher,
1918). Imagine that the genetic effect is mediated by one locus (the
”trait locus”) with m alleles. If we could tabultae the trait mean
by maternal and paternal allele, we would have an m × m table
with (1, . . . , i, . . . m) rows and (1, . . . , j, . . . m) columns. Usually, we
would only observe the traingular table, folded on the diagonal.
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Assuming equality of effects of maternal and paternal alleles, the
table is symmetric about the diagonal. Under H-W equilibrium,
this is a ”balanced design” – row and column assignments are
independent.

M P
1 . . . j . . .m Total

1
. . .
i µij(pi pj) µj = ∑j pjµij(pi)

. . .
m
Total µj(pj) µ = ∑ij pi pjµij

Table 1: Trait means and frequencies

= Mean(Y − µij)
2 + ”Environmental”

= ∑
i

pi(µi − µ)2 + ∑
j

pj(µj − µ)2 + ”Additive”

= ∑
ij

pi pj(µij − µi − µj + µ)2 ”Dominance”

Analysis of variance:

Source Component of variance
Between rows (maternal alleles) ”Additive” genetic σ2

Add
Between columns (paternal alleles)
Interaction (non-additivity) ”Dominance” genetic σ2

Dom
Subjects within cells (genotypes) ”Environmental” genetic σ2

Env

Table 2: Analyse of variance table

The additive component of variance is the variance ”explained” by
a model in which maternal and paternal alleles have simple additive
effects on the mean trait value. The dominance component represents
residual genetic variance not explained by a simple sum of effects
(Table 2).

Note Fisher’s use of a standard term of classical genetics, domi-
nance, in a new way.

Figure 4: Example of a diallelic locus

In Figure 4, the environment variance is represented by the vertical
bars. The total genetic variance is the variance between genotype
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means:

• Additive component is that due to the regression line

• Dominance component is that about the regression line

Two individuals who share two alleles IBD at the trait locus are
genetically identical in so far as that trait is concerned. The covariance
between their trait values is the total genetic variance σ2

Gen = σ2
Add +

σ2
Dom. Two individuals who share one allele IBD at the trait locus

share the genetic effect of that allele. The covariance between their
trait values is half the additive component of variance, σ2

Add/2. Two
individuals who share zero alleles IBD at the trait locus are effectively
unrelated. The covariance between their trait values is zero. All this
assumes there is no shared environmental influences.

But the degree of relationship between two individuals determines
the probabilities of being 0, 1, or 2 IBD. In general, the covariance
between trait values in two relatives is

z1
σ2

Add
2

+ z2(σ
2
Add + σ2

Dom) = 2Φσ2
Add + z2σ2

Dom,

where Φ is the kinship coefficient. The dominance compoennt is
frequently small so that covariance (and hence correlation) is propor-
tional to the kinship coefficient, Φ.

Fisher considered the model in which the effects of several loci
combined additively. In this case, additive and dominant components
at each locus also combine additively:

• Overall heritability is the sum of components due to each locus,

• Relationship between trait covariance (correlation) and family
relationship is the same as for a single locus.

Fisher used the word epistasis in a new way, to denote deviation
from additive effects. If effects are more than additive (some would
term this ”synergism”), the correlation falls off faster with decreasing
kinship.

No. alleles shared IBD 2 1 0 Φ r
z2 z1 z0

Self, MZ twins 1 0 0 1/2 H
Parent-offspring 0 1 0 1/4 H/2
Full siblings, DZ twins 1/4 1/2 1/4 1/4 H/2
Half siblings 0 1/2 1/2 1/8 H/4
Uncle-nephew 0 1/2 1/2 1/8 H/4
Grandchild-grandparent 0 1/2 1/2 1/8 H/4
Double 1st cousins 1/16 6/16 9/16 1/8 H/4
First cousins 0 1/4 3/4 1/1 H/8

Table 3: IBD sharing, kinship, and trait
correlation by relationship
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Table 3 assumes no inbreeding, zero ”dominance”, and no ”epis-
tasis”. A simple estimate of H (heritability) from twin studies is
2(rMZ − rDZ).

In the model for polygenic inheritance, the trait is determined by
the sum of very many small effects of different genes. The distribution
of the trait in two relatives, Y1 and Y2, is bivariate normal – an ellip-
tical could of points. The correlation is determined by the degree of
relationship (IBD probabilities) and the heritability.

Alternatively, if inheritance of the trait were due to a single major
locus, the bivariate distribution for two relatives would be a mixture
of circular clouds of points.

• Spacing of cloud centres depends on additive and dominance
effects

• Marginal distributions of genotypes depend on allele frequency

• Tendency to fall along diagonals depends on IBD status (hence on
relationship)

In the Morton-Maclean model, the trait is determined by additive
effects of a single major locus plus a polygenic component. The bi-
variate distribution for two relatives is now a mixture of elliptical
clouds.

This model can be fitted to trait values for individuals in pedigrees,
using the method of maximum likelihood. It is necessary to allow for
the manner in which pedigrees have been recruited into the study, or
”ascertained” – pedigrees in the study may be skewed, either delib-
erately or inadvertently, towards those with extreme trait values for
one or more family members. Segregation analyses were often over-
interpreted – the results depend on very strong model assumptions:

• additivity of effects (major gene, polygenes, and environment)

• bivariate normality of distribution of trait given genotype at the
major locus

Aggregation of discrete traits, such as diseases in families have
been studied by an extension of the Morton-Maclean model. Assume
a latent ”liability” to disease behaves as a quantitative trait, with a
mixture of major gene and polygene effects. When liability exceeds
a threshold, disease occurs. This model may be fitted by maximum
likelihood, although ascertainment corrections can be troublesome.
As in the quantitative trait case, this approach relies upon strong
modelling assumptions.

A less model-based approach is to study risk in relatives of dis-
eased probands. These are termed recurrence risks. Recurrence risks
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are usually expressed relative to the general population risk, and
denoted by λR where R denotes the relationship with the proband.
We can use Fisher’s (1918) results to predict the relationship between
recurrence risk and relationship to affected probands, by considering a
trait coded Y = 0 for healthy and Y = 1 for disease. Then,

Population mean(Y) = Pr(Y = 1) = Population risk, K

An alternative algebric expression for the covariance is

Covariance(Y1, Y2) = Mean(Y1Y2)− Mean(Y1)Mean(Y2)

and Mean(Y1Y2) is the probability that both members are affected.
From this it follows that

Pr(Y2 = 1 | Y1 = 1
K

=
Pr(Y2 = 1&Y1 = 1

K2 = 1 +
Covariance(Y1, Y2)

K2

This is the relative recurrence risk, λR! As before, the covariance
between Y1, Y2 depends on the IBD probabilities (i.e. the type of
relationship), so that

λR − 1 =
2Φσ2

Add + z2σ2
Dom

K2

Assuming no inbreeding and single gene, Table 4 gives the recur-
rence risks according to IBD sharing and relationship R.

No. alleles shared IBD 2 1 0 Φ λR − 1
z2 z1 z0

Self, MZ twins 1 0 0 1/2 σ2
Gen/K2

Parent-offspring 0 1 0 1/4 σ2
Add/2K2

Full siblings, DZ twins 1/4 1/2 1/4 1/4 σ2
Add/2K2 + . . .

Half siblings 0 1/2 1/2 1/8 σ2
Add/4K2

Uncle-nephew 0 1/2 1/2 1/8 σ2
Add/4K2

Grandchild-grandparent 0 1/2 1/2 1/8 σ2
Add/4K2

Double 1st cousins 1/16 6/16 9/16 1/8 σ2
Add/4K2 + . . .

First cousins 0 1/4 3/4 1/1 σ2
Add/8K2

Table 4: IBD sharing, kinship, and
relative recurrence risk

Additive/dominance variance components are functions of pen-
etrance. Assume disease is caused by a single diallelic locus, allele
frequencies p and 1 − p, and genotype relative risks are given in Table
5.

Genotype Probability Relative risk
1/1 (1 − p)2 1 (Reference)
1/2 2p(1 − p) 1+δ

2/2 p2 1+2δ

Table 5: Genotype relative risk and
recurrence risk
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Then, σ2
Add/K2 = 2p(1 − p)δ2 and σ2

Dom = 0. Also, λPO = λS =

λDZ = 1 + p(1 − p)δ2,a nd λMZ = 1 + 2p(1 − p)δ2. Under these
assumptions, λMZ−1

λDZ−1 = 2.
So far we have assumed that familial aggregation of disease is

due to a single locus. If several genes are involved, the patterns of
recurrence risk depend on how they act together. Two simple models
have been studied to explore this:

• Genetic heterogeneity: a model for ”parallel” action of genes – vari-
ation in any one of several genes can lead to disease susceptibility

• Additive model: with this model, the probability of disease is
approximately predicted by a sum of effects of each locus

λR − 1 ≈
2Φσ2

Add + z2σ2
Dom

K2

Here σ2
Add and σ2

Dom represent sum of additive and dominance
contributions from each locus. Each locus makes an additive con-
tribution to λR − 1. Thus, under the additive model, the relative
magnitudes λR − 1 for different relatives is maintained. In particular,
(λMZ − 1)/(λDZ − 1) = 2.

An alternative model is one in which genes act synergistically, as
in classical epistasis. This yields a mutliplicative model, in which the
overall penetrance is given by a product of effects from different genes.
Then it is easily shown that recurrence risks also obey a multiplicative
model: λR = ∏j λ

(j)
R , where λ

(j)
R represents the contribution of the

$j$-th locus. This gives a more rapid decline of risk with distance
of relationship. For example, a disease caused by two genes acting
multiplicatively, each with zero dominance variance and λMZ = 9 (so
that λMZ − 1 = 8), is illustrated in Table 6.

Relative Gene1 Gene 2 Overall
MZ twin 9 9 81
1st degree 5 5 25
2nd degree 3 3 9
3rd degree 2 2 4

Table 6: Epistasis and synergism

A real example: recurrence risks for multiple sclerosis
Estimated lifetime risks in families of MS cases registered in the

E.Anglian region are given in Table [[]].
Here, MZ twin risk ≈ 1/3 and general population risk ≈ 1/800.
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Relative N Cases Risk
Sibling 1350 43 .038
Parent 1239 25 .020
Offspring 1057 6 .018
Uncle/Aunt 2584 21 .009
Niece/Nephew 1776 10 .016
Cousin 3404 23 .009

Table 7: Recurrence risks for multiple
sclerosis
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Probability and identity by descent in Families

Figure 5: Probability calculations on
pedigrees

Pedigree members 1, 2 and 4 are founders, while 3 and 5 are descen-
dants. The probability of all five genotypes is

Pr(Founder genotypes)× Pr(Transmission to descendents)

Probabilities of genotypes are defined as relative frequencies in a
very large (infinite) population. Programs usually assume random
mating and Hardy-Weinberg equilibrium – the four alleles carried by
parents are as if sampled independently from a single population.

Two genes which are copies of a common ancestral gene are said
to be identical by descent (IBD). For example, in Figure 6, subjects 3
and 4 share one gene IBD (the paternal allele, a). But, in these families,
they share respectively 0 and 2 genes IBD.

We only know IBD status if all genotypes are observed and the two
parents have, between them, four different alleles. In this next case
subkects 3 and 4 share a gene identically by state (IBS), but none IBD
(their a alleles are from different parents).
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Figure 6: Identity by descent

1 Exercise: What is the inbreeding
coefficient for a child of a first cousin
marriage (you can assume that founders
are not inbred – a usual assumption
for probability calculations in human
populations)?

Can an individual share a gene IBD with himself? Only if there is
inbreeding.

Given only pedigree structure we can calculate probabilities of
IBD states using only Mendel(s first law: a parent will transmit either
gamete with probability 1

2 . Inbreeding coefficient is defined as the
probability that the two alleles within a single inidivudal are IBD.
In our example, this is 1

4 (if the founders are not themselves inbred)
– for each of the four grandparental genes there is a probability of
1
2 × 1

2 × 1
2 × 1

2 of transmission of both copies to the grandchild, so the
total probability that the grandchild’s two genes are IBD is 1

4 × 1
2
× 1

2
× 1

2
× 1

2
=

1
4

When we are unable to assign IBD sharing we can assess the prob-
ability that two individuals share 0, 1 or 2 genes IBD. These proba-
bilities are often denoted by (z0, z1, z2) – but there are several types
of IBD probabilities depending on the information available. Prior
IBD probabilities are the probabilities of IBD sharing conditional only
upon the relationship between the two subjects.

Sibling pair (figure in margin) – what are prior values of (z0, z1, z2)?
Say that the first sib inherited a and c alleles:

• 2-IBD: probability that second sib also inherits a and c is 1
2 × 1

2 = 1
4

• 1-IBD: probability that second sib inherits b and d is also 1
2 × 1

2 = 1
4
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2 Exercise: (double first cousins) What
are the probabilities of sharing 2,
0 alleles IBD? Hence, what is the
probability of sharing 1 allele IBD?

• 0-IBD: probability that second sib is a/d or b/c is 1
4 + 1

4 = 1
2

Since the labelling of alleles is arbitrary, this argument holds regard-
less of which alleles the first sib inherits. Thus, for two siblings:

z0 =
1
4

, z1 =
1
2

, z2 =
1
4

Each cousin must inherit one allele from each pair of grandparents.
2 In either case, there are four equally probable alternatives. The
probability that they inherit the same grandparental copy from both
sides is 1/4 × 1/4 = 1/16. This is the probability that they are 2-IBD.
The probability that they inherit different alleles from the two sides is
3/4 × 3/4 = 9/16. This is the probability that they are 0-IBD. Thus the
probability of 1-IBD is 1 − 1/16 − 9/19 = 3/8.

Consider one gene at a given locus picked at random from each of
two relatives. The kinship coefficient (denoted by Φ) is defined as the
probability that these two genes are IBD. Given no inbreeding:

• if they are 2-IBD, probability = 1
2 ,

• if they are 1-IBD, probability = 1
4 ,

• if they are 0-IBD, probability = 0,

so that Φ = 1
2 z2 +

1
2 z1, half the average proportion of genes shared

IBD. But see Table 3.
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Parent-of-origin effects

An important aspect of transmission/disiquilibrium studies is the
ability to differentiate the effects of alleles according to their parent-of-
origin. When origin is known, we will write genotype as m/p, where
m is the allele inherited from the mother and p the allele inherited
from the father. In the diallelic case, we are interested to determine if
the risk associated with genotype 1/2 is the same as that for 2/1. It
is relatively simple to restrict the TDT calculations to transmissions
from mothers, or from fathers; there is only one type of family which
presents problems.

When offspring is 1/1 we know that both parents have transmitted
allele 1. Similarly for allele 2, when the offspring is 2/2. But, when
the offspring is 1/2 we know that one parent has transmitted allele 1
and one has transmitted allele 2 – but we don’t know which. Triads
in which mother, father, and child have identical genotype can be
included in the simple TDT, but not in an analysis by parent-of-origin.

Figure 7: Testing for differential parental
transmission

Remember the factorization of transmission probabilities (Figure 7).
Under the multiplicative model, RR for genotype i/j, θi/j = ΦiΦj.

Pr(Child is i/j) =
ΦiΦj

Φ1Φ3 + Φ1Φ4 + Φ2Φ3 + Φ2Φ4
=

Φi
Φ1 + Φ2

×
Φj

Φ3 + Φ4

This argument extends naturally to the case where maternal and
paternal alleles carry different Φ’s. Under the multiplicative model,
maternal and paternal transmissions are independent.

This in turn suggests a simple contingency table analysis. For a
diallelic marker we have a 2 × 2 table with allele transmitted (1, 2) in
rows and heterozygous (mothers, fathers) in columns. There are two
problems:

• Independence would only hold under the strict multiplicative
model, and

• Omission of intercross triads with heterozygous offspring creates
dependence between transmissions

One proposal is simply to omit all transmissions from intercross
families – each triad then only contributes one informative transmis-
sion. This is the transmission asymmetry test (TAT).
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An alternative analysis is ti use the full conditional likelihood –
equivalent to case vs three ”pseudo-controls”. ”Intercross” triads
require special treatment:

• omit sets based around heterozygous affected offspring (cases),

• but we must also omit heterozygous pseudo-controls from other
sets. . .

• a 1/1 case has a single 2/2 control and vice versa – these sets are
uninformative about parent-of-origin effects

For a diallelic locus, we can show that the information for a parent-
of-origin effect comes from two 2 × 2 tables (Table 8).

Mother 1/1 1/2 2/2 1/2
Father 1/2 1/1 1/2 2/2
Child 1/1 a1 b1 1/2 a2 b2

1/2 c1 d1 2/2 c2 d2

Table 8: Information on parent-of-origin
in a CPG analysis

The two odds ratios, (a1 × d1)/(b1 × c1) and (a2 × d2)/(b2 ×
c2), both estimate the relative risk θ = π2|1/π1|2. CPG analysis is
equivalent to Mantel-Haenszel pooled test for association across
the two tables. The TAT analyses the single collapsed table – only
valid when parental genotype does not affect risk (except via child’s
genotype).

Another approach, suggested by Weinberg (AJHG, 61:229-235), is
also based on counts of triads of parents and an affected offspring.
Consider the frequency of mating types. For a diallelic locus, we build
a 2 × 2 table with mother and father’s alleles in rows and columns.
In the population, diagonally opposite frequencies should be eqaul.
After selection by affected offspring, the ratio of such frequencies
should reflect corresponding offspring risk ratios. This assumption
can be termed parental symmetry, or parental exchangeability.

Mother Father Child
1/1 1/1 1/1
1/2 1/2 1/1, 1/2, 2/2
2/2 2/2 2/2
1/2 1/1 1/1
1/1 1/2 1/1
1/2 1/1 1/2
1/1 1/2 1/2
2/2 1/1 1/2
1/1 2/2 1/2
2/2 1/2 1/2
1/2 2/2 1/2
2/2 1/2 2/2
1/2 2/2 2/2

Table 9: The 15 possible case-parent
triads



NOTES ON EPIDEMIOLOGICAL GENETICS 23

In Table 9, first group of triads are not (directly) informative about
parent-of-origin effects. Remaining 5 pairs have asymmetries be-
tween parental genotypes which might relate to risk and, therefore,
to frequency of the triads. Weinberg suggest conditioning upon mat-
ing type and affected offspring genotype, regarding the ”response”
variable as being which parent is which.

Mother Father Child Risk Odds
1/1 1/1 1/1 π1/1 1
1/1 1/2 1/1 π1/1
1/2 1/1 1/2 π2/1 θ

1/1 1/2 1/2 π1/2
2/2 1/1 1/2 π2/1 θ

1/1 2/2 1/2 π1/2
2/2 1/2 1/2 π2/1 θ

1/2 2/2 1/2 π1/2
2/2 1/2 2/2 π2/2 1
1/2 2/2 2/2 π2/2

Table 10: The parental asymmetry test
(TAT)

In Table 10, in middle three groups, count a as total number in
which child genotype was 2/1, and b as the total number in which
it was 1/2. ML estimate of θ is a/b. Chi-squared test (1-df) is (a −
b)2/(a + b). However, this procedure assumes that maternal genotype
has no direct effect on the risk of disease in the child (because the case
vs. pseudo-control method conditions upon parental genotype, that
method makes no such assumption).

Table 11 shows the effect of maternal genotype. Note that the thrid
pair of triads are uninformative in the CPG analysis – the assumption
of parental symmetry allows additional data to be used. Weinberg
proposed that we can estimate θ, ψ1, ψ2 by logistic regression, and
calculate a likelihood ratio test for θ = 1.

Mother Father Child Risk Odds
1/1 1/1 1/1 π1/1,1/2 ψ1
1/1 1/2 1/1 π1/1,1/1
1/2 1/1 1/2 π2/1,1/2 θψ1
1/1 1/2 1/2 π1/2,1/1
2/2 1/1 1/2 π2/1,2/2 θψ2
1/1 2/2 1/2 π1/2,1/1
2/2 1/2 1/2 π2/1,2/2 θψ2/ψ1
1/2 2/2 1/2 π1/2,1/2
2/2 1/2 2/2 π2/2,2/2 ψ2/ψ1
1/2 2/2 2/2 π2/2,1/2

Table 11: Allowing for a (mutliplicative)
effect of maternal genotype

Using logistic regression, ”indicator variables” σ, m1 and m2 are
used to account for maternal origin and genotype effects (Table 12).
There is no intercept, 5 data points and 3 parameters, so that there are
2 df for ”fit”, i.e. deviation from multiplicative effects of origin and
maternal genotype.
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Mother Father Child Risk Response σ m1 m2
1/1 1/1 1/1 π1/1,1/2 1 0 +1 0
1/1 1/2 1/1 π1/1,1/1 0
1/2 1/1 1/2 π2/1,1/2 1 +1 +1 0
1/1 1/2 1/2 π1/2,1/1 0
2/2 1/1 1/2 π2/1,2/2 1 +1 0 +1
1/1 2/2 1/2 π1/2,1/1 0
2/2 1/2 1/2 π2/1,2/2 1 +1 -1 +1
1/2 2/2 1/2 π1/2,1/2 0
2/2 1/2 2/2 π2/2,2/2 1 0 -1 +1
1/2 2/2 2/2 π2/2,1/2 0

Table 12: Logistic regression

Interaction between maternal and child genotypes can masquerade
as a parent-of-origin effect (Table 13). In this example, allele 2 carries
RR of θ – but only if mother is 1/1. This makes the same predictions
as the model underlying the PAT – except for the fourth comparison.
For θ > 1, this scenario looks very much like excess paternal transmis-
sion. In general, it is rather difficult to distinguish ”imprinting” effects
from interaction between mother and child genotypes.

Mother Father Child Risk Odds
1/2 1/1 1/1 π1/1 1
1/1 1/2 1/1 π1/1
1/2 1/1 1/2 π2/1 1/θ

1/1 1/2 1/2 π1/2
2/2 1/1 1/2 π2/1 1/θ

1/1 2/2 1/2 π1/2
2/2 1/2 1/2 π2/1 1
1/2 2/2 1/2 π1/2
2/2 1/2 2/2 π2/2 1
1/2 2/2 2/2 π2/2

Table 13: Interaction between maternal
and child genotypes

Weinberg’s method must be expected to be more efficient – partic-
ularly if we can assume no effect of maternal genotype. Additional
assumption of a priori parental exchangeability allows use of 1/1 + 2/2
matings. The genralization of these methods to loci with more than
2 alleles is relatively straightforward. Generalization to > 1 affected
sibs per family is not straightforward – we get bias as well as wrong
standard errors.

We can extend the case/pseudo-control analysis to incorporate
the additional information available by assuming exchangeability of
parental genotypes. We condition upon the two parental genotypes
but not on their order. The likelihood is then equivalent to comparing
the case with 7 pseudo-controls (Figure 8). Again, generalization to
> 1 affected offspring is not straightforward.
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Figure 8: Conditioning on exchangeable
parental genotype
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Family-based studies and the TDT

wip
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Linkage studies

If two loci, M and D, are linked, the probability that they be passed
down together as a haplotype depends upon the probability of re-
combination during meiosis. For unlinked loci (e.g., on different
chromosomes), the recombination fraction θ = 0.5 while, for com-
pletely linked loci θ = 0. If D is an unknown disease gene and M is
an observed marker locus, and if M and D are linked, the marker will
segreagate in the same way as disease.

In general, different marker alleles will segregate with disease in
different families.

In order to be useful for mapping disease genes, marker loci must
have two characteristics:

1. they should be highly polymorphic, so that their segregation in
families can be tracked accurately, and

2. their locations should be known accurately

The most useful marekrs for this purpose are microsatellite mark-
ers – repeated nucleotide sequences. The most frequently occuring
microsatellites are dinucleotide repeats, but tri- and tetranucleotide
repeats are preferred since they can be typed more accurately.

Genetic disatnces between markers are determined by typing them
in a standard set of families, e.g., the 3-generation CEPH pedigrees.
These estimates are subject to error. With the completion of the hu-
man genome project, physical location of markers are now known.
However, there is an uneven relationship between physical distance
(bases) and recombination fractions and genetic distance (cM). At
least we can now be fairly confident of the order of markers along a
chromosome.

We observe pedigrees in which more than one member has disease.
For quantitative traits we measure markers and trait values in families
and see whether marker and trait segregate similarly. Again we may
choose to ascertain families according to trait values if we wish –
e.g., strongly concordant or discordant sibs; this will often result in
increased power to detect linkage. Two appraoches to the analysis
of linkage studies have grown up, usually termed ”parametric” and
”non-parametric”.

Parametric linkage analysis: Assume a diallelic disease gene with
known allele frequencies and penetrances. For multipoint analyses
(using multiple markers), also assume the inter-marker genetic dis-
tances to be known. Only the location of the disease gene, and hence
the recombination fractionw ith marker(s), is regarded as unknown.
We investigate the support for different (genetic) locations of the
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disease gene by calculating the likelihood for different values of the
recombination fraction(s) – the probability of data hiven θ. It is con-
ventional to express this in terms of the log (base 10) of the ratio of
the likelihood to the likelihood at θ = 0.5 – the maximized LOD score
(MLS).

In contrast with segregation studies, in the analysis it turns out not
to matter how we ascertained pedigrees – the part of the likelihood
whihc depends on ascertainment doesn’t depend on θ so the MLS
is unaffected. However, the MLS can be strongly affected by what
we assume for penetrance, causal allele frequency, etc., and we can’t
generally estimate these from linkage studies due to ascertainment
of families. This approach is most suitable for simple ”Mendelian”
traits, e.g., diseasescaused by a single gene with high penetrance, but
has been extended to deal with genetic heterogeneity, i.e., where some
pedigrees are linked to one gene and other pedigrees to another, as in
the case of BrCa1 and BrCa2 breast cancer families.

Non-parametric or model-free approaches: If marker and trait loci
are linked, affected relative pairs will have more IBD sharing at the
marker locus than we would expect given their relaionship. There is
no explicit model for inheritance, although decisions must be taken
about how to score IBD sharing and how much emphasis to give to
different types of relative pairs. The most common type of study is
the affected sib pair study – largely because these are the most readily
available. Parents may be collected and genotyped. Their availability
improves the accuracy of IBD estimates when markers are not fully
polymorphic, and protects against genotyping errors.

The simplest scoring system is to compare observed and expected
numbers of genes shared IBD between affected pairs in the pedigree.
An unselected sibling pair is expected to share 0× 1

4 + 1× 1
2 + 2× 1

4 = 1
IBD. When we observe an affected sib pair to be 0-, 1- or 2-IBD we
score it −1, 0, or +1 respectively. More usually we don’t know IBD
status precisely. Observed and expected IBD sharing is calculated by

0 × z0 + 1 × z1 + 2 × z2

where z’s are ”prior” and ”posterior” IBD sharing probabilities
respectively.

An example is shown in Figure 9.
Given these data, z1 = z2 = 0.5 so that, a posteriori, the expected

number of genes shared IBD is 0.5 + 0.5 × 2 = 1.5. Thus, this sibship
contributes +0.5 to the total score. The non-parametric linkage (NPL)
score is a t or z statistic calculated by dividing the total score by its
standard deviation.

In order to calculate NPL scores, it is only necessary to calculate
posterior IBD probabilities under the null hypothesis (z0 = z2 = 0.25,
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Figure 9: Example of IBD sharing

z1 = 0.5). We can also calculate the likelihood under this assumption.
We can also maximize the likelihood with respect to the prior IBD
probabilities, and hence calculate an MLS. Often the likelihood is
maximized over values of z0, z1, z2 consistent with plausible genetic
models – the ”possible triangle restriction”. MLS scores calculated
in this way are not strictly comparable with those from parametric
linkage analyses.

Parametric and non-parametric methods face the same problems of
computing the probability of various inheritance patterns within pedi-
grees. Single point analyses consider the problem of a single marker
plus the unobserved trait locus while multipoint analyses consider
all the markers simultaneously. Computation can be laborious owing
to having to consider possible recombination at each meiosis and by
missing data; some pedigree members are unobserved for trait and/or
markers. Even if markers are observed, their phase is not directly
observed but must be inferred.

Here is an illustration for the case of unknown phase. We observe
only that the father is A/a and B/b at two loci, as shown in Figure 10.

Figure 10: The case where phase is not
known

Depending on the paternal phase, there is either one or two re-
combinations. If the two phases are equally probable the likelihood
contribution is:
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θ(1 − θ)2 + θ2(1 − θ) = θ(1 − θ).

There are two widely used algorithms:

1. Elston-Stewart: deals with few markers (≤ 5) but large pedigrees

2. Lander-Green: deals with many markers but with pedigrees of
limited depth (≤ 4 generations)

The former method is used in the classical linkage analysis pro-
grams which implement parametric linkage analysis: LINKAGE,
FASTLINK, VITESSE. The latter method is used in programs which im-
plement non-parametric methods: MAPMAKER/SIBS, GENEHUNTER,
ALLEGRO, MERLIN. All programs use a standard ”preped” data
structure.

The preped file layout is as follows:

1. Pedigree identifier

2. Member identifier within pedigree

3. Identifier of father of this person (or zero for a founder)

4. Identifier of mother of this person (or zero for a founder)

5. Sex (1 = Male, 2 = Female)

6. Disease status (1 = Unaffected, 2 = Affected)

7. . . . pairs of values containing the two alleles at each marker

By convention, missing data items are coded as zero.
There are strengths and weaknesses. Linkage analysis is unaffected

by allelic heterogenity (> 1 causal variant in a disease susceptibility
gene) – there is no assumption that the same marker allele segregates
with disease in different families. ”Mendelian” traits:

• Only one or two loci are involved, but causal variants are highly
penetrant

• Large pedigrees with multiple cases of disease are observed

• Parametric linkage analysis is efficient, and the pattern of segrega-
tion is clear so that plausible models can be chosen

For ”complex” traits:

• Disease susceptibility varies due to variation in several (perhaps
many) loci
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• Common variants with small effects and/or rare variants with
larger (though still modest) effects may be involved

• Typically we do not observe large multiply-affected pedigrees –
recurrence risks fall off quickly with decreasing kinship

• Parametric linkage methods can be misleading if we search for the
model which gives the biggest linkage peaks.

The probabilities that two relatives are affected given their IBD
state is given in Table 14, where λMZ and λP/O refer to part of the RRR
attributable to this locus.

IBD state Pr(Y1 = 1andY2 = 1 | IBD-state)
2 K2 + σ2

Add + σ2
Dom = K2λMZ

1 K2 + σ2
Add/2 = K2λP/O

0 K2

Table 14: Power of affected relative pair
studies

By applying Bayes rule, the probabilities of IBD states 0, 1, 2 for
two relatives of type R given that they are both affected are z0(1/λR),
z1(λP/O/λR) and z0(λMZ/λR), where (z0, z1, z2) are the prior IBD
probabilities for relatives of this type.

For sib pairs, we have

1
4λSib

,
λP/O

2λSib
,

λMZ

4λSib

Example:

Genotype Frequency Relative Risk
1/1 25% 1.0 (reference)
1/2 50% 1.5
2/2 25% 2.0

Table 15: Example of affected relative
pair studies

Here, λP/O = λSib = 1.0625, and λMZ = 1.125 so that the probabil-
ities that an affected sib pair share 0-, 1- or 2-IBD at the disease locus
are 0.235, 0.5, and 0.265. Even if marker were totally informative, and
tightly linked to the disease locus, huge sample sizes are necessary to
detect difference from (0.25, 0.5, 0.25) sharing.

Increased IBD sharing at a disease-susceptability locus falls off with
distance from the locus. The rate at which this happens determines
how closely spaced a set of markers must be to cover the whole
genome.

• The more distant the relative pairs, the more rapidly increased IBD
sharing falls off with distance – there are more intervening meioses
and, therefore, more opportunities for recombination.

• For sib pair studies, a 400 marker set, corresponding approximately
to 10cM spacing, is adequate.



NOTES ON EPIDEMIOLOGICAL GENETICS 34

A corollary to this is that, the closer the relationship between the af-
fected relative pairs, the less certain we can be about the true position
of a disease locus. With sib pairs we might be able to implicate a 10
to 20 cM region – corresponding to about 10 to 20 million nucleotide
bases.

A whole-genome screen involves a high degree of multiple test-
ing. It has been calculated that a LOD score peak of 3 corresponds
to a whole-genome p-value of 0.05 – one false positive in 20 genome
screens. The equivalent NPL score is ˜ 3.7, corresponding to an uncor-
rected p-value of 1 × 10−4 (one-sided). Complex diseases may have
modest total λSib, shared between several/many loci; if we need to
achieve such standards of proof, the power of linkage studies may be
modest, even with very large numbers of sib pairs.

The MRC BRIGHT study: A collaborative study between Aberdeen,
Cambridge, Glasgow, Leicester, London (Barts), Oxford, and CNG
Paris. First phase was an affected sib pair linkage study. ”Cases” de-
fined as falling within the top 5% of the BP distribution with onset
before age of 60. Second phase was a TDT trio collection, now ex-
tended to add a population-based control group from each centre.
Results were first published in The Lancet, June 2003.

Initial power calculations (Mark Lathrop & Joe Terwilliger) were
as follows: Assumed 30% heritability for blood pressure variation,
shared between 5 loci (although the proposal is for a clinical endpoint,
not a QTL), and 80% power to detect linkage at genome-wide 5%
level using 300 equally spaced markers (average heterozygosity 80%).
Initial target was 1500 affected sibling pairs – without parents.

No. families Full-sibs Half-sibs Affected sib pairs
1361 1 0 1361

6 2 0 12
150 3 0 450

1 4 0 4
21 6 0 126

2 10 0 20
1 15 0 15
1 21 0 21

43 0 1 43
1 0 3 3

11 1 2 33
1 6 4 10

Table 16: The linkage study families

On chromosome 5p we have an MLS of 2.21, while on chromo-
somes 6q and 9q the MLS is 3.00 and 2.37.

Given the estimates of IBD sharing probabilities at each location,
we can estimate the corresponding values of λSib (assuming no domi-
nance variance). Confidence intervals can be obtained by bootstraping
(Table 17).
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Figure 11: Chromosome 5

Chrm. MLS λ̂Sib SE 95% CI
5p 2.21 1.056 0.024 1.020–1.114
6q 3.00 1.083 0.037 1.038–1.195
9q 2.37 1.163 0.057 1.057–1.286

Table 17: Confidence intervals by
bootstrap

We should expect these estimates to be biased upwards (selection of
most significant results).

As for disease traits, there are parametric and non-parametric
approaches to the analysis.

Parametric approach: (variance components)

• Trait normally distributed conditional upon causal genotype

• We can fit a variance components model to pedigree data and hence
calculate MLS statistics for linkage

• This approach is highly dependent on validity of the normality
assumption

Non-parametric analysis: Look for association between IBD state
and trait similarity in relative pairs.

In the Haseman-Elston method of analysis, we collect pairs of
relatives (usually siblings). Given a very highly polymorphic marker
we could classify each pair as 0-, 1-, or 2-IBD. Then, we relate trait
similarity measured either by (minus) squared difference in trait value,
−(Y1 − Y2)

2, or by product of deviations, (Y1 − Ȳ)(Y2 − Ȳ), to IBD
sharing.

• More generally we cannot assign IBD status with certainty

• Use estimated IBD sharing score: 1 × Pr(1 − IBD = +2 × Pr(2 −
IBD)., where the probabilities are posterior probabilities of IBD
state given marker data.
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Power is increased by sampling extremes of trait similarity, e.g.
sibs who have aither very similar or very different trait values (con-
cordant and discordant relative pairs). The analysis requires some
modification – better to take IBD state as the dependent variable and
trait similarity as independent variable. Note that variance component
methods are invalidated by sampling on trait similarity.
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Linkage and association

Linkage studies are not powerful against the smalle effects we are
comint to expect in disease genetics. Increasingly attention has been
directed to association studies which look for association between
phenotype and genotype at the population level:

• direct approach: test candidate causal polymorphisms, e.g. an SNP
which leads to an amino acid substitution

• indirect approach: test marker loci which may be associated with
the causal variant at the population level

Then, in contrast with linkage, the same marker allele(s) track the
causal variant across the whole population. Association between loci
at the population level is called allelic association.

Haplotype relative frequencies between two loci A and B are
defined as in Table 18.

A B
1 2 ·

1 p11 p12 p1·
2 p11 p12 p2·
· p·1 p·2 1

Table 18: Haplotype relative frequencies

There is allelic association between loci A and B if Pij ̸= Pi· timesP·j.
Reasons for allelic association may be different:

• linkage disequilibrium: allelic association due to close proximity of
loci

• stratification: the population has two distinct subpopulations, with
different allele frequencies at both loci (Figure in margin)

• admixture: due to interbreeding of two founder populations.
Proportion of genes derived from the different populations varies
between individuals

There is also a phenomenon known as erosion of linkage disequilib-
rium by recombination. An individual could receive i − j haplotype
directly from a parent or he/she could receive a recombinant haplo-
type formed by crossover of parental i − x and y − j haplotypes. It
follows that the expected change in haplotype frequency between one
generation, Pij, and the next, P⋆

ij , is

P⋆
ij = (1 − θ)Pij + θPi·P·j.

Assuming allele frequencies to stay the same, the disequilibrium
coefficients P⋆

ij − Pi·P·j = (1 − θ)(Pij − Pi·P·j) decay deometrically. If θ is
small, this is approximately exponential.
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Let’s start from the beginning. There once was no variation at
locus B and there were only two A − B haplotypes. Then there was
a mutation at B on one chromosome (Figure in margin). The 2 − 2
haplotype will either die out or ”drift” to an appreciable frequency in
the population, with or without selective pressure.

Before the first recombination, the haplotype frequencies will be as
follows (Table 19):

A B
1 2 ·

1 p1· 0 p1·
2 p·1 − p1· p·2 p2·
· p·1 p·2 1

Table 19: Haplotype relative frequencies
before first recombination

The initial disequilibrium coefficient reads:

P11 − P1·P·1 = P1· − P1·P·1
= P1·(1 − P·1
= P1·P·2

Disequilibrium then decays due to recombination. Lewison’s D′

measure expresses the disequilibrium coefficient relative to this initial
value:

D′ =
P11 − P1·P·1

P1·P·2
.

In order to estimate D′ we construct a 2 × 2 contingency table, and
plug the observed relative frequencies into the formula for D′. But we
must arrange the table correctly – with the initially absent haplotype
in the correct celll. In practice we must guess which one this is from
the current data – a procedure which leads to (upward) bias. It is then
easily calculated from the observed and expected frequencies of the
conventional chi-squared test: In case two of the cells have O < E,
choose the one with the smallest O – we assume that this represents
the most recent haplotype. Then D′ = 1 − O/E.

If d is the genetic distance between the loci and the recombination
fraction is small, (1 − θ) ≈ e−d and, if the (younger) mutation is t
generations old, the expected value of D′ is given by the Malecot
model:

E(D′) = e−td.

Allowing for further mutation and for the upward bias in the
estimate,

E(D′) = Ae−td + B.
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However, this is only an expectation – the real values are created
by a random process; observed values of D′ vary considerably around
the model.

In practice we do not observe haplotypes; we observe the genotype
at the two loci. Our data is a 3 × 3 contingency table with 1/1, 1/2
and 2/2 in rows and columns, instead of 1 and 2 as before, so that
8/9 genotype combinations can be resolved into pairs of haplotypes.

The ninth could be either
1 − 1

2 − 2
or

1 − 2

2 − 1
. The EM algorithm is used to

iteratively carry out the following calculations:

1. Resolve phase-ambiguous genotypes by splitting them between the
two assignments in ratio given by their relative probability using
current estimates of haplotype frequencies

2. Count assignments to obtain new haplotype frequencies

A different measure of LD is provided by the coefficient r2. Recall
that D′ is derived from population genetic considerations; there is no
intention that D′ = 1 should imply that the two loci carry the same
information. The most important index with this property is

r2 =
(P11 − P1·P·1)2

P1·P2·P·1P·2
.

Note that r2 can be small even when D′ is 1. A wild-type a.b haplo-
type is modified by single mutations at each locus, introducing new
alleles A and B. There is no subsequent recombination. The haplotype
phylogeny and the haplotype frequencies are given in the following
Table and in the margin Figure.

b B
a 90 10
A 10 0

Table 20: Haplotype relative frequencies
before first recombination

From the Table above, we have r = −0.111 and r2 = 0.012. The low
r2 arose because the mutations occured on different branches of the
chromosome ancestry.

Cross-overs occur randomly at each meiosis with rate 1 per Morgan.
Consider the segment around a fixed locus (·) on chromosomes
inherited IBD by two siblings, as shown in Figure 12. (x indicates
cross-overs.)

In the ”sum process”, cross-overs occur at the rate of 2 per Morgan.
Some simple probability theory shows that the distribution of this
distance is χ2

4/4. For two subjects in a large closed population, in
which all pairs of subjects are IBD at each locus if we go back N
generations, the distribution of the shared segment length is χ2

4/(4N)

(Mean = 1/N, SD ≈ 0.7× Mean).
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Figure 12: Another view of lD: Haplo-
type sharing

It seems that LD is even more variable than this. There are at least
two reasons:

1. the ”coalescence time” back to common ancestor is, itself, very
variable,

2. sperm typing experiments have revealed that recombination does
not occur with equal probability at all points in the genome – there
are ”hot” and ”cold” spots.

Recently it has been suggested that the genome falls into ”blocks”,
with little haplotype diversity within blocks: Mean block size seems
to be about 14 kb in Caucasians and 8 kb in Africans, but, again, this
is very variable; there are blocks up to 200 kb in size. However, block
boundaries may be indistinct.

Figure 13: Hot spots (From Daly et al.,
Nature Genetics 2001)

A consequence of the lack of haplotype diversity in regions of
strong LD is that there is considerable redundancy – most polymor-
phisms (and haplotypes) in such a region can be predicted from a
smaller set. Johnson et a. (Nature Genetics, 2001) coined the term
”haplotype tagging” SNPs, or ”htSNPs” for such a set. Choice of tags
can be integrated within an SNP discovery program:

1. Validate SNPs derived from database, and identify new SNPs by
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sequencing as much of the region as feasible in a small number of
subjects (32?, 48?)

2. Estimate haplotypic structure and employ search algorithms to
determine the most predictive subset of polymorphisms. General-
izations of the R2 measure are used to assess this.
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Indirect association studies: choice of markers and mutli-marker anal-
yses

The success, and cost-effectiveness of indirect association studies
depends on good choice of markers. Until recently, investigators
have speculatively typed a few known polymorphisms in genes of
interest. Recently it has been realised that success depends on detailed
knowledge of the polymorphisms occuring in a gene and of the LD
structure. We resequence candidate genes in small panels of 32–96
subjects. These data are then used to select markers for large-scale
studies. Hopefully the need for this laborious step will be reduced as a
result of the International HapMap Project.

An international collaboration whose aim is to map LD in four
hhuman populations (http://www.hapmap.org). The main aim is to
provide the data needed to make the best choice of SNPs for indirect
association studies.

Subjects studied:

• 30 parent/child trios from Nigeria

• 30 trios from USA (European ancestry)

• 45 unrelated individuals from each of China and Japan

In first stage, 600,000 SNPs were typed. In next phase 3m SNPs will
be typed (complete Autumn, 2005), rising to 4.5m.

How will ve analyse the data? What determines the power to
detect a causal variant? How can markers be chosen to maximize
power, given constraints on resources? We start with a general model
for indirect association (Figure 14).

Figure 14: A model for indirect associa-
tion (autosome)

X(1), X(2) code presence or absence of various features of the
marker haplotype. Their sum, X(+), codes the number of times each
feature occurs in the marker genotype (0, 1, or 2). We observe the
indirect association between X and Y. Power depends on strength of
both relationships.

The Cochran-Armitage test is basically a t-test; in large samples t2 is
approximately distributed as χ2 on 1 df:

http://www.hapmap.org
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t =
(

X̄(+)
Cases − X̄(+)

Controls

)
/
√

Var
(

X̄(+)
Cases − X̄(+)

Controls

)
, t2 ∼ χ2

1

A more general formula, applicable to quantitative traits, Y:

U =
N

∑
i=1

X(+)
i (Yi − Ȳ), U2/Var(U) ∼ χ2

1

Alternatively, we can obtain essentially the same results using
regression analysis.

When we have several markers, they form a marker haplotype. X
is then potentially multivariate, coding presence or absence of several
features of the marker haplotype. X(+) then codes the number of
times each feature occurs in the marker genotype (0, 1 or 2). Several
authors have proposed the use of Hotelling’s T2 test – the natural
geenralization

• For case-control studies, compare the vector of difference in means
between the different elements of X(+) with its variance-covariance
matrix

• In large samples, T2 is distributed approximately as χ2 with df =
number of features coded in X

Assumptions and derivation (Figure 14):

• Generalized codominant causal model, g(E{Y}) = µ + γZ(+)

• Linear regression for prediction of causal variant, E{Z} = κ +

β1X1 + β2X2 + . . .

• Test is derived as a score test for γ = 0, maximizing its value over
the unknown regression coefficients, β (a Lagrange multiplier test)

Power is determined by the degrees of freedom and the non-
centrality parameter, η, of the χ2 test:

η = NR2
Z/XR2

Y/Z Quantitative traits

R2
Z/X is the coefficient of determination – the % of variance of Z

”explained” by X; R2
Y/Z is the heritability due to this causal variant. In

case-control study: η ≈ 2N0 N1
(N0+N1)

· (p′−p)2

p̄(1− p̄) · R2
Z/X. Finally, p, p′, p̄ are fre-

quencies of the causal variant in controls, cases, and the whole study
respectively. N1, N0 are numbers of cases and controls. Increasing the
complexity of X increases η but also increases the degrees of freedom
in the test. What is X?

In the case of single locus, testing markers one at a time by compar-
ing allele frequencies in cases and controls. For haplotypes, we may
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perhaps group rarer haplotypes. In the multivariate locus, comparing
the profile of allele frequency differences for several markers. Multi-
locus and haplotype approaches can also involve multiple testing of
groups of two or three markers at a time. Optimality depends on a
complex balance between multiplicity of tests, degrees of freedom and
R2

Z/X – the ability to predict the causal variant.
To calculate genotype score X(+), haplotype coding requires phase

resolution (Table 21): Average X(+) over possible phase resolutions,
weighting by posterior probabilities. Locus coding does not – each
marker genotype simply coded 0, 1 or 2.

Marker Haplotype Locus
haplotype X1 X2 X3 X1 X2

1.1 0 0 0 0 0
2.1 1 0 0 1 0
1.2 0 1 0 0 1
2.2 0 0 1 1 1

Table 21: Haplotype versus multivariate
locus indicators

In Figure 15, P = 6.5 × 10−8 (3527 cases + 3930 controls), P =

7.3 × 10−3 (725 families), and P = 1.3 × 10−10 (combined).

Figure 15: Locus coding: 20 tags in
IL2RA (CD25)

Is simple locus scoring optimal? Tags and causal variant are close to
a perfect phylogeny. This needs to be nearly true to be able to detect
small effects. Test is readily extended by adding (first order) interac-
tion terms. What about recessive variants in the codominant model?
We can extend the test by adding an indicator for estimated heterozy-
gosity at the causal locus. The non-centrality parameter/degrees-of-
freedom trade-off may be better viewed locally in the phylogeny – do
a series of 2- or 3-df tests, with multiple testing correction.

If $A$–F are tags, a causal variant, Z, would simply add a new
clique – it is likely to be tagged by a relatively small subset of markers
(Figure 16).
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Figure 16: Perfect phylogenies and
clique junction trees

As an example, consider the CTL4A central region (Figure 17),
where tag SNPs are shown in blue.

Figure 17: Example of the CTLA4 region

When choosing tags, the aim is to minimize redundancy while
capturing as much information as possible. There are three main
methods:

1. Single marker tagging: each known SNP has a single tag with
r2 ≥ 0.8

2. Multi-marker tagging: multiple regression of each SNP on tag
locus scores has R ≥ 0.8

3. Haplotype tagging: multiple regression of each SNP on haplotype
indicators has R2 ≥ 0.8

Note that multiple regression R2 is biased upward whent he sample
size is small – multi-marker tagging won’t work quite as well in a
future study as we would (naively) think.

Single marker tag selection using cluster analysis is computation-
ally the most tractable method yet proposed. We carry out a cluster
analysis of all SNPs in order to assign them to ”bins” such that all
SNPs in a bin have hogh r2 with each other. We select one SNP from
each ”bin” as a tag. This method has been implemented efficiently
enough to allow its use on a whole-genome scale – it is currebtly in
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use in the design of whole-genome SNP ”chips”. It is implemented
in Haploview – the software for interacting with the data on the
HapMap website.

For multi-marker taggong, we need to find the best subset of SNPs
such that the remainder can be predcited by multiple regression with
R2 ≥ 0.8. Regresion can be on

• Locus scores, providing a resonably efficient and simple analysis

• Haplotype scores, providing the minimum set of tags

Best subset searchs are computationally intensive – we need to
restrict the choice to a shortlist, for example using single marker
tagging, perhaps with r2 ≥ 0.5, or simple step-up and setp-down
regression strategies.

Figure 18: Some genes/regions

Figure 19: Some genes/regions (con’t)

Do we know enough? The strategy outlined is guaranteed to work
– if we have identified all possible causal variants and typed them in
our initial small sample. If we have imperfect knowledge, the choice is
potentially flawed – and even the final version of HapMap falls short
of resequencing.
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Population-based studies of disease/gene associations

Three reasons for a genetic association:

• The locus is a functional variant, that is the association is causal

• The locus is in linkage disiquilibrium with a functional variant

• The association is due to confounding by population stratification

In respect to association studies, genetic epidemiology differs little
from the classical epidemiology of behavioural and environmental
risk factors. Much of this chapter revises familiar epidemiological
ideas, but there are some aspects of analysis which are special to
genetics. We will start by discussing studies of disease risk, and deal
with quantitative traits at the end of the chapter.

Disease frequency can be measured in terms of prevalence and
incidence, the latter being the preferred measure for assessing cause
of disease. Both are probability measures. Prevalence is defined as
the probability, π(t), that an individual has disease at some specified
point in time. Incidence is defined either in terms of the probability of
developing the disease over a fixed period, or of the probability rate:

Incidence, λ(t) = lim
δ→0

Pr(Onset of disease between t and t + δ)

δ

In epidemiology, association between disease and aetiological
factors are usually expressed in terms of relative risk measures. In the
simplest case, this is some measure of disease risk in exposed subjects
divided by the same measure of risk in unexposed subjects. In genetic
epidemiology, relative risks may be defined for genotypes, alleles, or
haplotypes.

For a diallelic locus with alleles A, a, there are three genotypes:
A/A, A/a, a/a. We will usually take one of these, aa say, as reference
and express genotype relative risk as

GRRA/A =
Risk for A/A genotype
Risk for a/a genotype

= θA/A

GRRA/a =
Risk for A/a genotype
Risk for a/a genotype

= θA/a

Allelic relative risks, ΦA, Φa are defined by the multiplicative
model θi/j = θiθj where, again one allele is taken as reference. In the
diallelic case, taking a as reference so that Φa = 1:

θA/A = (ΦA)
2, θA/a = ΦA

If the relative frequency of alleles i, j are fi, f j, the relative frequency
of genotype i/j under H-W equilibrium is 2 fi f j if i ̸= j, and ( fi)

2 if
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i = j. HWE assumption implies that each subject’s two chromosomes
are sampled independently from the population. A sample of N in-
dependent subjects can be treated as a sample of 2N independent
chromosomes. When there is HWE in the population and the multi-
plicative model holds then HWE also holds in cases of disease, but
with modified allele frequencies:

f ⋆i = (Φi fi)/ ∑
i
(Φi fi)

Prevalence studies include cross-sectional studies and case-control
studies (prevalent cases versus healthy controls). Incidence studies
include prospective (cohort) studies and case-control studies (incident
cases versus healthy population controls). Case-control designs are
much more efficient. They have some disadvantages in the study of
environmental and behavioural causes of disease, but these are not
relevant to genetic associations.

Naturally, we would treat the observed genotype as the random
variable, and compare its distribution between cases and controls.
This becomes computationally complicated when there are many
alleles or several loci. But the same answer is obtained by treating
disease status (case vs. control) as a random outcome, predicted by
genotype. The general method for analysis of such models is logistic
regression. But simpler methods are available for simple cases.

Assuming the multiplicative model, HWE in the population, and a
rare disease, we can simply count alelles in cases and controls. For a
diallelic locus, see Table 22.

Allele Cases Controls
A DA HA
a Da Ha

Table 22: Allele counting – the 2 × 2 table

We can test for association using the conventional χ2 test (1-df). The
allelic relative risk (A vs. a) is estimated by the odds ratio:

DA/Da

HA/Ha
=

DA/HA
Da/Ha

=
DA/Ha

Da/HA

For rare diseases, the odds ratio estimates the allelic relative risk.
In studies of prevalent cases, the relative risk refers to ratios of preva-
lence. In studies of incident cases, the relative risk measure is the
ratio of incidence rates in the base population – the incidence rate
ratio λA/λa. This does not depend on the disease being rare, but does
assume

• ”incidence density sampling” (we draw control(s) whenever a case
arises)
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• proportion of population exposed is stable over the duration of the
study

Below are some general considerations on test statistics for θ = 1.

• Likelihood ratio test: (twice) the difference between the log likeli-
hoods at θ = 1 and at θ = θ̂.

• Score test: squared slope of the graph of log likelihood against log θ

at θ = 1 divided by its variance, taht is U2/V

• Wald test: squared difference between θ̂ (or log θ̂) and the null
value, divided by its variance (margin figure)

In large samples, all three appraoches lead to 1-df χ2 tests. The
conventional χ2 tests for the 2 × 2 table is the score test.

Figure 20: Score test

Allele Cases Controls Total
A DA HA NA
a Da Ha Na

Total D H N

Table 23: Allele counting – the 2 × 2 table

Score: U = DA − D NA
N and its variance: V = NANaDH/N3. Notice

that U2/V is the conventional ∑(O − E)2/E statistic.
LR and Wald tests by logistic regression: Fit a logistic regression

model for case or control origin of allele against an indicator, x, taking
value 1 for allele A and 0 for allele a:

Allele x Probability Odds Log Odds
a 0 πa πa/(1 − πa) log{πa/(1 − πa)} α

A 1 πA πA/(1 − πA) log{πA/(1 − πA)} α + β

Table 24: LR and Wald tests

The regression coefficient β is the log of the odds ratio:



NOTES ON EPIDEMIOLOGICAL GENETICS 52

log(OR) = log
πA/(1 − πA)

πa/(1 − πa)
= log

πA
1 − πA

− log
πa

1 − πa
= β

We can estimate β and carry out LR test of β = 0 (equivalent to
Φ = 1).

Genotype Cases Controls
Leu/Leu 89 56
Leu/Pro 369 250
Pro/Pro 342 266
Total 800 572

Table 25: Example of the Pro871Leu SNP
in the BrCa1 gene

The assumptions of (a) HWE in the populations (and hence in
controls), and (b) the multiplicative model, means that we can treat
chromosomes as independent and analyse the 2 × 2 table (Table 26).
The estimated RR for the Leu allele is Φ̂Leu = (547 × 782)/(1053 ×
362) = 1.122 (the multiplicative model implies a RR for Leu/Leu of
(1.122)2 = 1.259). Likelihood ratio and score tests are 1.954 and 1.949
respectively.

Allele Cases Controls
Leu 547 362
Pro 1053 782
Total 1600 1144

Table 26: Example of the Pro871Leu SNP
in the BrCa1 gene (con’t)

Regarding subject counting, we distinguish two more 2 × 2 analyses.
Testing the null hypothesis against dominant or recessive alternatives
also leads to tests for 2 × 2 tables – but counting subjects:

Genotype Cases Controls
Leu/* 458 306
Pro/Pro 342 266
Total 800 572

Table 27: Subject counting: dominant
case

While there may be a case for such tests for a functional variant,
indirect associations with markers tend to give alternatives in which
heterozygots have intermediate risk.

A general analysis of genotype relative risks involves the 3 × 2table.
We need two odds ratios to emasure association. Again taking a/a as
reference category, compare A/A vs. a/a and A/a vs. a/a:

We have θ̂A/A =
DA/A Ha/a
Da/a HA/A

, and θ̂A/a =
DA/a Ha/a
Da/a HA/a

. Again, we
may test for association using likelihood ratio, score, or Wald tests –
difefrent large sample approximations. These are 2-df χ2 tests (the
conventional test is the score test).

Another approach consists in using 2-df tests from logistic regres-
sion. We introduce two indicator variabels, x1 and x2, indicating
genotypes A/a and A/A respectively, and regress disease status of
subject against both of these (Table 30).
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Genotype Cases Controls
Leu/Leu 89 56
Pro/* 711 516
Total 800 572

Table 28: Subject counting: recessive
case

Genotype Cases Controls
A/A DA/A HA/A
A/a DA/a HA/a
a/a Da/a Ha/a

Table 29: Two-df tests in the 3 × 2 table

We have log(OR, A/A vs. a/a) = β2 and log(OR, A/a vs. a/a) =
β1. Again we can use a logistic regression program to estimate β1, β2

and to test the hypothesis of no association (β2 = β1 = 0).
A further 1-df test is provided by the multiplicative model – the

most convenient model in which the risk for A/a is intermediate
between risks for a/a and A/A. Fit using logistic regression using a
single indicator, x, taking values 0, 1 or 2 (Table 31).

This time, log(OR, A/A vs. a/a) = 2β (odds ratio = Φ2), and
log(OR, A/a vs. a/a) = β (odds ratio = Φ).

The score test for β = 0 is the Cochran-Armitage test for trend of
proportions.

• The score, U, is exactly the same as that for allele counting

• We use a different estimate of its variance, V, which does not
assume HWE

• This test is very nearly the same as carrying out 2-sample t-test to
compare the means of x between cases and controls.

These tests are preferable to allele counting, since they avoid the
need to assume HW equilibrium.

From Table 28, we see that θ̂Leu/Leu = 89×266
342×56 = 1.236 and θ̂Pro/Leu =

369×266
342×250 = 1.148. The relative risks agree quite closely with those
predicted by the multiplicative model fitted to the ”chromosomes”
Table 26 (1.259 and 1.112). A summary of some of the tests we have
discussed is given in Table 32.

The multiplicative model is equivalent to a model, on the log odds
scale, in which there is an additive effect of alleles, but no dominance
effect. We can parametrize the model in just this way (Table 33).

Here, βD = log OddsA/a√
Oddsa/aOddsA/A

, βD = 0 corresponds to the

multiplicative model.

Genotype x1 x2 Probability Odds Log Odds
a/a 0 0 πa/a πa/a/(1 − πa/a) α

A/a 1 0 πA/a πA/a/(1 − πA/a) α + β1
A/A 0 1 πA/A πA/A/(1 − πA/A) α + β2

Table 30: Two-df tests using logistic
regression
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Genotype x Probability Odds Log Odds
a/a 0 πa/a πa/a/(1 − πa/a) α

A/a 1 πA/a πA/a/(1 − πA/a) α + β

A/A 2 πA/A πA/A/(1 − πA/A) α + 2β

Table 31: One-df tests using logistic
regression

Type of test 2-df test 1-df test (subj) 1-df test (chrm)
LLR 2.056 1.991 1.954
Score 2.055 1.984 1.949

Table 32: Summary of all tests

The number of genotypes increases with the square of the number
of alleles. For markers with 3, 4, 5, . . . , K alleles there are 6, 10, 15, . . . , K(K+

1)/2 genotypes. Unrestricted tests based on genotype relative risks
lack power – it is usually better to consider the multiplicative alteran-
tive model:

θi/j = ΦiΦj

Logistic regression: generate K − 1 indicator variables – one for each
(non reference) allele. Each one counts the number of occurences of
the allele. This test for association has K − 1 df.

For example, for a 3-allele locus, indicator variables are shown in
Table 34.

A likelihood ratio test (on 2 df) is carried out by comparing the
log likelihoods for regression models with and without inclusion of
x1, x2. The score test is equivalent to Hotelling’s T2 (a multivariate
generalization of the t-test) – compare the means of x1 and x2 for cases
and controls.

Current experience of SNP markers suggests that linkage disequi-
librium (LD) exhibits a ”block” structure – groups of adjacent markers
in close LD, separated by ”hot spots” at which recombination has
destroyed LD. LD blocks seem to be, on average, rather smaller than
genes. Demonstration that a disease susceptibility locus lies within
an LD block can be acrried out by typing a set of ”haplotype tagging”
SNPs (htSNPs), chosen to capture haplotype diversity of blocks. We
can look for association in three ways:

• Analysis of each htSNP separately, with correction for multiple
testing

• Comparison of htSNP haplotype frequencies in cases and controls

• Compare allele frequencies between cases and controls for all loci

Genotype x1 xD Probability Odds Log Odds
a/a 0 0 πa/a πa/a/(1 − πa/a) α

A/a 1 1 πA/a πA/a/(1 − πA/a) α + βA + βD
A/A 2 0 πA/A πA/A/(1 − πA/A) α + 2βA

Table 33: Alterantive parametrization of
the 2-df model
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Genotype x1 x2 log Odds Odds ratio
1/1 0 0 α 1 (reference)
2/1 1 0 α + β1 Φ1
3/1 0 1 α + β2 Φ2
2/2 2 0 α + 2β1 (Φ1)

2

3/2 1 1 α + β1 + β2 Φ1Φ2
3/3 0 2 α + 2β2 (Φ2)

2

Table 34: Example of 3-allele locus

We can calclulate p-values for any of the test statistics considered
thus far using a Monte Carlo appraoch:

• Randomly permute the order of the vector which assigns case/control
status to subjects

• Recalculate the test statistic for each random permutation

• In what proportion of random permutations is the observed value
of the test statistic exceeded?

This is easily adapted to correct for multiple testing:

• For each permutation, calculate tests for all markers. Note the
largest

• In what proportion of random permutations does this exceed the
largest observed value?

With K diallelic markers, there are potentially 2K different haplo-
types. In studies of unrelated individuals, haplotypes may not be
assigned to individuals unless they are homozygous at all loci or all
loci bar one. Neverthelss, test statistics constructed for the phase-
known case may be adapted to the phase-unceratin case (Schaid et al.,
AJHG, 70: 425–34). But what test statistic?

• Even for multiplicative alternatives, the simple test has up to 2K − 1
df.

• Geary-Moran statistics may be constructed based on ”distances”
between haplotypes (Clayton and Jones, AJHG, 65:1161–9). But
how do we measure distance?

Consider frequencies of 2-locus haplotypes in complete LD (D′ =

1), as in Table 35.

Locus
A B/1 B/2
1 f1,1 f1,2
2 f2,1 f2,2 = Small

Table 35: Strong LD

The test for association has 3-df, but one haplotype is rare and may
carry little information. Comparing allele frequencies at the two loci
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in cases and controls gives a test with 2-df. If LD is strong, this carries
nearly as much information but uses one less degree of freedom.

In the haplotype test, we construct three indicator variables count-
ing, say, occurences of haplotypes 1.2, 2.1, 2.2 in each subject, and then
compare the mean scores for cases and controls. In the 2-locus test, we
construct two indicator variables counting occurences of allele 2 at
each locus, and then compare the mean scores for cases and controls.
When LD is strong, the 2-locus test is more powerful, and does not re-
quire phase to be known. The 2-locus test can also be done in logistic
regression, using two indicators counting occurence of allele 2 at each
locus. This approach generalises to > 2 loci.

Control for confounding: Association may be false, due to

• different risks between different subpopulations, accompanied by

• different allele frequencies between these subpopulations

We control for confounding by comparing cases and controls
within strata – is there a significant difference within strata? Effect
modification involves gene-gene interaction, and gene-environment
interaction. We again make comparisons within strata – does the size
of the effect differ between strata?

In the case of a diallelic marker, we have either a 3 × 2 table of sub-
ject counts, or a 2 × 2 table of chromosome counts for each population
stratum (Figure 21).

Figure 21: Stratification to control for
confounding

But there may be little data in each stratum. Tests which simply
add chi-squared values across strata have many df and lack power.

A more parcimonious appraoch consists in using common odds
ratios. Consider, as an alternative to the null hypothesis, the model
in which the association parameter(s) are constant across strata. Here,
the association parameters are either the genotypic odds ratios, θA/A,
θA/a, or the allelic odds ratios, θA. The standard 1 df ”score” tests have
been generalized to the stratified case:

• The test for the 2 × 2 table generalizes to the Mantel-Haenszel test
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• The Cochran Armitage test (which we used for the 1 df test in the
3 × 2 table) generalizes to the Mantel extension test

• The general idea is to take U = U1 + U2 + . . . and V = V1 + V2 + . . ..

Assuming constant odds ratios across strata, log odds that a subject
in stratum s is a case rather than a control is given by:

log Odds = α + βx + Stratum effect (1 df model)

log Odds = α + β1x1 + β2x2 + Stratum effect (2 df model)

1-df model 2-df model
Genotype x x1 x2
a/a 0 0 0
A/a 1 1 0
A/A 2 0 1

Table 36: Logistic regression

We simply include stratum in the logistic regression as a series of
indicator variables.

We may wish to test the hypothesis that the strength of association
as measured, for example, by an odds ratio, differs between strata.
This is conveniently carried out using logistic regression. Consider
two strata, coded s = 0 and s = 1. The logistic regression model

log Odds = α + βx + γs + δ(s, x)

becomes

log Odds = α + βx (s = 0)

log Odds = (α + γ) + (β + δ)x (s = 1)

Testing for δ = 0 is a test for interaction or (better) effect modifica-
tion.

Regarding inference abount functional variants, consider loci A and
B that are both strongly associated with disease and are in LD with
one another. If A is the functional variant, stratification by genotype
at A will destroy the association with B. However, stratification by B
will not destroy the association with A. If neither is functional, both
reflecting a third functional variant,

• stratification by each will not entirely destroy association with the
other

• there may be ”cis” interaction – an additional effect of the A.B
haplotype

If LD between A and B is too strong, there will be little power to
detect these patterns.
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Little power is gained by having large number of controls. If costs
per subject dominate, the most effeicient design has approximately
equal numbers of cases and controls. If there is strong confounding
due to stratification, we can lose power. We may have ≪ 1 control per
case in some strata, and ≫ 1 controls per case in others. This can be
avoided by matching at the design stage. But another (arguably more)
important reason for matched designs is to provide a sampling from
controls. Note that, in general, matching at the design stage does not
avoid the need to stratify during analysis.

Each single case has its own set of controls – each case defines a
stratum. Conventional logistic regression fails because we would have
to introduce an extra parameter for each stratum. Conditional logistic
regression fits the same model but avoids the need for these extra
parameters by using a likelihood based on an ingenious conditional
probability argument. The score test based on this argument has the
same U for each stratum but V is multiplied by N/(N − 1).

For some years, matching in case-control studies was considered to
be entirely beneficial, but it later emerged that matching for a variable
which, while not a confounder, is related to the factor of interest,
causes loss of power.

Example: use of sibling controls (”sib TDT” study)

• If there is minimal linkage in the region, the probability that two
siblings share 0, 1, or 2 genes IBD are 1

4 , 1
2 , and 1

4 respectively.

• On average, half of the alleles of a case and a sibling control would
be expected to be identical; only the remaining half would con-
tribute information about association.

• This design will need twice the sample size required for a study
with unrelated controls.

Admixture and/or stratification may confound genetic association
when risk differs between subpopulations.

• Any locus whose allele frequencies will vary between subpopula-
tions will have non-zero association parameters (log odds ratios)

• As a result, test statistics will be overdispersed and there will be
false positive findings.

Given data concerning a large number of loci, two ways of tackling
this have been proposed:

1. Estimate the amount of overdispersion empirically (Devlin and
Roeder, Biometrics, 2000)
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2. Given ancestry-informative markers, latent stratification/admixture
can be estimated – compute a posterior probability that each
chromosome segment derives from each ancestral population
(Protchard et al., AJHG 67:170, 2000; Hoggart et al., AJHG bf
72:1492, 2003; Patterson et al., AJHG 74:979, 2004).

A made-up example: Devlin and Roeder’s ”genome-wide control”

• We carry out 1 df tests for 200 SNP markers, sufficiently well
spaced that we can safely assume linkage equilibrium within
populations.

• We find 20 tests are significant at p < 0.05 and 6 at p < 0.01.

• Overdispersion of chi-squared tests is caused by unobserved
stratification and random differences in allele frequencies between
strata.

• Devlin and Roeder suggest that the true distribution of test statis-
tics can be approximated by a simple multiple of chi-squared.

Figure 22 show idealised results.

Figure 22: Stratification to control for
confounding

Unbroken line represents the line of equality – tests distributed as
chi-squared on 1-df. Broken line has slope 1.44, representing overdis-
persion. Using the overdispersed distribution, there are 10 markers
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with p < 0.05 and 2 with p < 0.01. Devlin and Roeder discuss estima-
tion of overdispersion parameter (here 1.44). Problems: (1) in real life,
is the line really straight? (2) inefficiency.

Figure 23: Latent classes

We cannot assign gametes exactly to ancestral populations. Instead
we calculate a posterior probability, given ancestry-informative mark-
ers, and divide each data point between strata. Null distribution of
test statistic can be computed by random permutation of case/control
indicators, or by a large-sample approximation to it.

A simple model assumes that trait, Y, is normally distributed with
variance σ2 around a mean that varies with genotype G – µG say.
Following Fisher (1918), we can decompose the variation of trait with
genotype into additive and dominance components. For G = i/j,

µi/j = µ + αi + αj + δij

αi is the additive effect of allele i, while {δij} are dominance effects.
Additive and dominance terms correspond to ”main effects” of alleles
and ”interaction” between alleles in the analysis of variance.

Population-based studies:

• Cross-sectional study: the simplest type of study is of a sample
of subjects from the general population, we relate trait value to
genotype at one or more loci.

• Two-stage study: an efficient alternative (only sometimes feasible)
is to select subjects with extreme trait values: (1) more efficient use
of expensive genotyping, (2) analysis is more difficult: ignoring
selection results in biased estimates of effects.

Regression analysis of unselected study: Regress trait value on
genotype. For a diallelic marker, the additive model gives a 1-df test
and the full model gives a 2-df test:

Y = α + βAxA + βDxD + Residual
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Indicator 1/1 1/2 2/2
additive, xA 0 1 2
dominant, xD 1 0 1

Table 37: Regression analysis of unse-
lected study

For multiallelic marker, introduce an xA indicator for every allele
(except the reference). There are many indicators for dominance –
usually ompitted.

Main references:

1. Breslow and Day (1980) Statistical Methods in Cancer Epidemiol-
ogy. Vol 1: The Analysis of Case–Control Studies, IARC Publica-
tions, Lyon.

2. Clayton and Hills (1993) Statistical Models in Epidemiology, Ox-
ford University Press, Oxford.

3. Clayton (2001) Population Association. Handbook of Statistical
Genetics, ed. Balding, Bishop and Cannings, Wiley, Chichester.

4. Cordell and Clayton (2005) Genetic association studies. The Lancet
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Gene-environment interaction in complex disease

Questions for epidemiology:

• What is ”gene-environment interaction”?

• Can we test for its existence in a biologically meaningful way using
epidemiological methods?

• Does knowledge of environmental risk factors aid the search for
genes?

• Does knowledge of genes aid the search for (causal) environmental
risk factors?

• Is gene-environment interaction relevant to designing public health
interventions?

What is G-E interaction? The word ”interaction” can mean different
things to different people. Many of the more extravagant claims for its
importance fail to define it.

The word ”interaction” means different things to statisticians and bi-
ologists. Some epidemiologists prefer the word ”synergism”, but. . .
while most would agree that epidemiological synergism among expo-
sures exist, definint it is problematic. — Weinberg CR. On Synergism,
Encyclopedia of Biostatistics, Wiley

The notion of interaction and indeed the very word itself are widely
used in scientific discussion. This is largely because of the realtion
between interaction and causal connexion. Interaction in the statistical
sense has, however, a more specialized meaning related, although often
in only a rather vague way, to the more general notion. — Cox DR. Int.
Statist. Rev:52, 1984

The term ”interaction” is widely used in statistics. Although it has a con-
crete arithmetical meaning in all statistical models. . . it often appears
than this term is used when something unusual, something non-specific,
is described without an attempt to derive a deeper understanding of the
phenomenon. — Wahrendorf J. Perspectives in Medical Statistics, 1981

A decade ago the concept of interaction among causes of disease was at
the center of a lively debate. Since that time, controversy over the nature
of interaction has largely subsided, although there seems never to have
been an adequate resolution of the conceptual and pragrmatic issues
that had been raised. Thompson WD. Clinical Epidemiology:44, 1991

What do biologists mean? What is interesting to biologists – it
being self-evident that genes and environment interact? A specific
mode of interaction is when a gene and an environmental factor
act on the same pathway. The promise of being able to study G-E
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interaction in epidemiological studies seems to offer the potential for
epidemiology to elucidate mechanism.

What do statisticians mean? Statisticians know what they mean by
”interaction”, but does anyone else?

I have also been pondering over these matters and found that there is
only one basic definition of non-interaction between x and y:

expected response = f [a.h1(x) + b.h2(y)] ,

a and b being parameters and f , h1, h2 arbitrary functions. If no such
functions exist in a given situation it is clear that x and y inextricably
interact. — Hilden J. Disucssion of paper by Wahrendorf, 1981

That is, interaction is absent when the effects of the two factors
are additive with respect to some quantitative measure of response:
Response = Gene effect + Environmental effect. Statistical interaction
describes lack of fit of this simple statistical model for joint action.

Epistasis: Similar issues are involved in the study of gene-gene
interaction.

I am not clear as to the exact sense in which he uses the term ”epistacy”
but as it has already been used biologically in a sense which is evidently
not the one in which it is used here, I think that it should be made quite
clear how the new sense proposed differs from that already in use. —
Punnett RC. Review of Fisher’s 1918 paper to the Royal Society

IDD10
IDD3 R1.NN R1.NB R1.BB R2.NN R2.NB R2.BB
NN 63/81 48/78 50/152 52/68 64/101 95/193
NB 58/73 48/118 9/61 54/93 34/95 –
BB 23/81 6/57 2/159 19/85 5/92 –

Table 38: Diabetes and two loci in two
strains of mice

There is statistical interaction on some scales of measuremnt of
risk, but not on others. Is there epistasis? If one locus blocked or
reversed the effects of the other, there would be clear implications for
mechanism (”qualitative interaction”).

Relevance to biology:

Unfortunately, choice among theories of pathogenisis is enhanced
hardly at all by the epidemiological assessment of interaction. . . What
few causal systems can be rejected on the basis of observed results
would provide decidedly limited etiological insight. — Thompson WD,
1991

Measuremnt error introduces a further difficulty in interpreting
statistical interaction or the lack of it. If two factors are measured
with error, the precise form of their joint action is distorded. When
studying disease risk, the distorsion is towards the multiplicative
model: Risk × Effect of A × Effect of B. Is this why multiplicative
models tend to fit rather well in practice?
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We focus here on statistical interaction which does not necessarily
imply interaction on the biological or mechanistic level. — Witte JS. On
Gene-Environment interaction, Encyclopedia of Biostatistics, Wiley

There seems to be little purpose in designing studies whose pur-
pose is to detect statistical interaction. . . Yet, if we are to believe the
power calculations often presented, such studies are advocated:

• Biobank UK: the need for a chort study of 500,000 middle-aged
subjects was initially justified on the basis of such calculations

• Drug-gene interaction studies

Elston et al. (Statistics in Medicine:18, 1999) describe a statistical
test, and sample size calculations, for drug-gene interaction studies.
”No interaction” means constant additive effect of genotype at every
dose of drug upon the probability of the desired response. Is this a
realistic model for what a biologist would mean by ”no interaction”?

Figure 24: A realistic model?

The statistician’s caveat: Elston et al. remark that interaction could
be defined in terms of additivity on a different scale of measurement,
and indicate how the test and power calculations would be modified.
But they fail to comment on the fact that the very existence of this
possibility undermines the purpose of the exercise.

Is E relevant to finding G’s? In the presence of strong (statistical)
G-E interaction, there can be a gain in power to detect genetic link-
age/association. . .

• but, for discrete outcomes, gains in power are modest except when
effects (and their interaction) are strong

• and, in the absence of strong a priori knowledge, gains mau be
dissipated in multiple testing
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• in the presence of exposure measurement error, effects and their
interaction are not strong

This is because nature tends to deliver a balanced design, by
”Mendelian randomization” (Yougman et al., Circulation:102, 2000).
It will usually ensure independence of genotype and exogenous ex-
posures. Unless direction of effects is modified, marginal effects of
gene and environment are weaker, but not destroyed. For quantitative
responses and strong effects, there can be power gain by reduction of
residual error, but this is not so pronounced for discrete outcomes.

Is G relevant to finding E’s? As before, power gain is modest or
nonexistent, except when strong a priori knowledge guides analysis
or there is reversal of direction of effect. In the former case, the answer
is already known and studies are essentially confirmatory. The latter
case seems implausible in most cases.

Guiding the search for environment determinants:

• Modern epidemiology is bedeviled by a multiplicity of possible
environmental causes, often difficult to measure (Taube H, Science
269, 1995)

• Better understanding of genetic effects may provide focus

Confirming causality:

• Stronger effects in genetically prone subgroups are less likely to be
due to bias or confounding

• Mendelian randomization ensures that genetic association studies
are less susceptible to the problems of observational studies

• When the effect of a gentic polymorphism mimics the effect of an
environmental exposure, this can provide convincing evidence that
the environmental exposure is causal

Case-control and family-based studies are the method of choice
for demonstrating genetic associations. Cohort studies are usually
preferred for the study of environmental factors. For studies of G-E
interaction, the advantages of cohort studies are not as clear:

• Cases are in short supply and may be phenotypically hetergoneous

• Because of Mendelian randomization, G-E interaction effects may
be less affected by biased exposure measurement

Case-only studies: Mendelian randomization also leads to the
possibility of gaining information simply by looking at cases:

• G and E should be independent in the population
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• Certain forms of joint action will create association between G and
E in cases

At the very least this offers the possibility of extracting further
information from existing designs.

Reagrding public health relevance, the development, in the late
60’s, of statistical methods for studying multiple risk factors led to
suggestions to target intervention upon subgroups with high risk
scores. For multifactorial disease, it doesn’t work – most cases come
from low to medium risk groups (Rose G, The strategy of preventive
medicine, 1992). The same suggestion has been made in relation to
genetic factors. But, for genetically complex diseases, why should the
situation be any different?

Genes and environment must interact and how they act together
to cause disease is an important field of study. Tests for statistical
interaction do not necessarily have any strong biological interpreta-
tion. Design of studies explicitly to test for statistical interaction has
no scientific jsutification. In the search for genetic and envionmental
determinants, consideration of factors together will increase power by
little if at all, and requires well founded prior hypotheses. For diseases
if complex geentic aetiology, targeting interventions at genetically
susceptible groups may not be an effective public health strategy.
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Multiple testing and ”significance” in genetic epidemiology

The Neyman-Pearson theory cosntitutes an approach to scientific
inference based on decision theory. The aim of an investigation is
seen as being to refute a null hypothesis, H0. We deine a test statistic,
T(Data), sensitive to departures from H0, and reject H0 if the observed
T, Tobs ≥ C – a critical value. We choose C so that the type 1 error
probability α = Pr(T ≥ C | H0) is small. This is the significance level.

This strict decision theoretic approach is now rarely used. Instead,
we calculate the p-value, defined by

p = Pr(T ≥ Tobs | H0)

as a measure of the strength of evidence agaisnt H0. Small p-values
indicate that data are improbable under H0 and cast doubt upon it.
The p-value is a statistic, calculated from the data, with the property
that under H0, its probability distribution is uniform over the interval
(0, 1).

Returning to the decision theoretic approach, if we do several tests
we increase our chances of making errors. We can rely on Bonferroni
correction: if α1 is the type 1 error probability in a single test, the type
1 error probability in N independent tests is

αN = 1 − (1 − α1)
N

≈ Nα1

We need to choose a smaller α1 to maintain the same overall type 1
error probability. The same correction is advocated for p-values.

Decision theory: we calculate independent tests T1, T2, . . . , TN and
reject H0 if any T > C. P-value approach: we calculate independent
p-values p1, p2, . . . , pN and record the smallest, pmin. The Bonferroni-
corrected value 1 − (1 − pmin)

N ≈ Npmin is uniformly distributed
over (0, 1). It is a measure of the strength of evidence against H0 from
all the tests taken together. In both cases, there is only one H0 under
consideration.

For the sake argument, assume that we can consider the genome
as 46 independent segments. A genome screen can be considered as a
test of 46 H0’s – not 46 tests of a single H0. Does it still make sense to
correct for multiple testing? It is generally accepted that it does, and
that we need to demonstrate ”genome-wide significance”. But why?

Consider two scientists. Professor A is cautious and unambiguous.
He writes a grant application every year for 46 years and each year
tests a separate segment of the genomes for linkage (in random order).
Professor B, however, is more ambitious. He writes a big grant and
tests all 46 regions in one study. Which scientist should apply a mul-
tiple testing correction? Or, perhaps neither? Or both? If Professor A
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should carry out a multiple testing correction, what correction should
be applied? What is N when he carries out his first study?

Both scientists should do the same, and (more controversially)
both scientists should apply a multiple testing correction. But, clearly,
the reason for a multiple testing correction does not follow from the
conventional theory:

• the number of tests carried out doesn’t seem relevant

• rather, in some sense, we need to correct for the multiplicity of
hypotheses

The Neyman-Pearson theory is concerned with probability calcula-
tions of the form Pr(Data | Hypothesis is true) while what the scientist
wants to know is Pr(Hypothesis is true | Data). This second question
raises deep philosophical problems about the nature of probability:
hypotheses are either True or Falsen unless there are degrees of truth.

Attempts to develop a coherent theory of probability as degree
of truth failed. But a theory has been developed in terms of degree
of belief. Unfortunately this loses the important characteristic of
objectivity – different scientists are permitted to have different degrees
of belief (as they do in the real world). But probability theory provides
a theory for modifying beliefs in the light of evidence so that, given
the same evidence, beliefs of different scientists will converge.

This is an uncontroversial theorem of probability theory. Its appli-
cation in the current (controversial) context is as follows. Given two
alternative hypotheses, H0 and H1,

Pr(H1 | Data
Pr(H0 | Data︸ ︷︷ ︸
Posterior odds

=
Pr(Data | H1

Pr(Data | H0︸ ︷︷ ︸
Likelihood ratio

× Pr(H1)

Pr(H0)︸ ︷︷ ︸
Prior odds

For example, H1 may be ”there is linkage of the region to disease”,
and H0 that ”there is no linkage”. But what about the strength of
linkage?

A hypothesis such as ”there is linkage” or ”there is association” is
really composed of infinitely many hypotheses. Even given that there
is linkage (or association), its strength (measured by some parameter,
θ say) is uncertain. We must also specify a prior distribution for θ. The
multiplier which transforms prior odds for H1 to posterior odds now
involves averaging over this distribution of θ:

Bayes factor =
Averageθ [Pr(Data | H1, θ)]

Pr(Data | H0

When testing for linkage we expect most null hypotheses to be true
– the prior odds are strongly against each H1. This is even so in the
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case of association studies. To overcome strong prior odds against
linkage or association, we need a large Bayes factor, corresponding
(loosely) to a small p-value. This correspondence is not simple and has
been the source of some controversy.

Table 39 show posterior odds for $H0 versus H1 at two signif-
icance leveles. Prior mean size of effect is ocnstant for all N. The
paradox may be resolved if we let Effect size ∝ 1/

√
N – or N ∝

1/(Effect size)2.

Sample size Significance level
N 0.1 0.01
1 0.365 0.0513
10 0.283 0.00797
102 0.690 0.0141
104 6.70 0.132
106 66.8 1.31
108 668 13.1

Table 39: A paradox (Cox and Hinkley,
1974, p397)

Small effects need large samples. In well-designed studies, the sam-
ple size will be realistic given the expected size of effect (if present)
and the desired significance level. For any p-value, take sample size
as that required to achieve a given power for a given size of effect.
Holding power constant we can plot Bayes factor agaisnt p-value.
Assumptions for association studies:

• Prior distribution of heritability attributable to an associated gene is
χ2

1

• We use χ2 tests for association; degree of freedom determined by
number of htSNPs needed

Two prior distributions for the heritability attributed to a causal
variant (figure in margin):

• distribution 2 is exponential, as suggested by Sewell Wright

• distribution 1 is χ2
1, as recently suggested by Rudan et al.

In Figure 25, P = 10−6 gives a Bayes factor > 104. Power is irrele-
vant, except when derisory (seriously underpowered studies require
smaller p-values to convince).

Figure 26 show almost the same curve. P = 10−4 gives a Bayes
factor > 102. We will get the same curve for 10 df.

In the case of microarrays and genome screens, how are things
chnaged if we test many hypotheses simultaneously? Aim not proof
of association, but the identification of a list of good candidates. We
can rank genes from the smallest p-value to the largest, and draw a
line someway down the list. Can we estimate the proportion of false
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Figure 25: One-df test

Figure 26: Five-df test
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positives identified? Here we are somewhat better of because we can
estimate the prior distribution of effect sizes and the proportion of
true positives.

We can estimate proportion of genes for which H1 is true, and the
distribution of p given H1 is true (Figure 27).

Figure 27: Empirical priors

Consider the rate of false positives if we choose all genes with
p-value ≤ Pc, a threshold. Bayes theorem gives

Pr(H0 | p ≤ Pc) =
Pr(p ≤ Pc | H0

Pr(p ≤ Pc
× Pr(H0)

Pr(p ≤ Pc | H0) is simply Pc, and Pr(p ≤ Pc) can be estimated by
the proportion of p-values less than or equal to Pc.

As an example, consider testing 10,000 genes and finding that 20
have p-values ≤ our chosen threshold, Pc = 10−3:

Pr(p ≤ Pc | H0)

Pr(p ≤ Pc)
=

10−3

20/10, 000
= 0.5

If we estimate that the true negative rate, Pr(H0) is 0.995, the
estimated proportion of false positives if we take Pc = 10−3 is
0.5 × 0.995 = 0.4975. If true positives are expected to be rare we can tale
Pr(H0) ≈ 1; this provides an upper bound for the false positive rate.

Use of the conservative approximation gives the false discovery
rate of Benjamini and Hochberg. If we select only the smallest of N
p-values, the false disccovery rate is pmin

1/N = Npmin – equivalent to the
Bonferroni correction. Storey et al. developed a method for estimating
the true negative rate. They called the estimates of false positive rate
for each threashold Q-values.
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Whole genome association studies

Prospects for whole-genome screens, estimated numbers of single
nucleotide polymorphisms (SNPs):

• Direct studies of common nsSNPs (MAF > 1%): ˜ 30,000–50,000
SNPs

• Indirect studies of genes: ˜ 300,000–500,000 SNPs

• ”Nearly” whole genome: 500,000–1,000,000 SNPs

• Whole genome: ˜ 2,000,000-4,000,000 SNPs

• Initial model-based estimate (Kruglyak, 1999): 500,000 SNPs

Mutliplicity of tests, or rather a priori implausibility of each hypoth-
esis, means that we require at least p < 10−6 for ”significance”. Com-
mon variants are likely to have small effects – odds ratio ¡ 1.5. This
militates for case/control studies with sample sizes of 5,000–20,000
(although few such collections currently exist).

Current ”gene-chip” technologies deliver 250,000–500,000 SNPs
on a study subject in a single determination, at a cost of $500–$1000.
Next year we expect double the number of SNPs for approximately
the same price. Nevertheless, whole genome screening studies will be
expensive undertakings.

We might need 8-10,000 subjects to achieve adequate power to
detect associations at p < 10−6. But it is more efficient to use a multi-
phase design. For example:

1. 2,000 cases + 2,000 controls with 500,000 SNP chip

2. Further 2,000 cases + 2,000 for best 100,000 SNPs

3. Further 4,000 cases + 4,000 for best 10,000 SNPs

These designs are in current use in candidate gene studies, and
will be essential in whole genome studies, although constrained by
available levels of mutliplexing. Computation of the characteristics
of such designs requires Monte Carlo integration – optimization is
computationally intensive.

Optimal choice of markers requires detailed mapping of LD, e.g.
based on HapMap data. Understanding LD depends on two aspects:

• Mapping physical extend of LD along the chromosome

• Understanding the structure of the haplotype phylogeny at each
point
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Truly optimal solutions will be computationally intensive. Current
chip designers are using single marker r2 cluster-based algorithms.

The large number of markers typed in whole-genome studies will
allow us to assess the impact of population substructure and to apply
”genomic control”. As ancestry-informative markers are discovered,
they will be incorporated into gene chips.

The Wellcome Trust Case-Control Collaboration arose out of inde-
pendent proposals from Universities of Cambridge and Oxford and
from the Sanger Institute, but now it has been extended to a wider
consortium. Funding of £8.6m announced by the Wellcome Trust in
April 2005. In total, there are 700,000 SNPs, including all known com-
mon non-synonymous coding SNPs, and tagging SNPs for as much as
possible of the remaining genome. Eight case groups covering a range
of pathologies (cardiovascular, cancer, autoimmune, psychiatric) and
two control groups (blood donors + 1958 birth cohort subjects).

Phased design:

1. 1,000 DNA’s from each group typed for all SNPs

2. Current funding is to type SNPs/regions for which p < 0.01 in a
further 1,000 cases and controls for each disease – but it is hoped
that falling costs will allow more SNPs to be typed in this phase.

Unfortunately 2,000 cases + 2,000 controls is barely adequate. Some
groups have more. We hope that the study will provide an impetus
for further case collections and greater cooperation amongst clinical
groups.

Initial design for a study of nsNSPs and type 1 diabetes:

• Stage 1: ˜ 900 cases and ˜ 900 controls and ˜ 7,500 nsSNPs with MAF
> 1%

• Stage 2: 3,000 nsSNPs in further 1,000 cases and 1,000 controls

• Stage 3: 1,000 nsSNPs in further 4,000 cases and 4,000 controls

Cases are ˜ 50% of all the juvenile-onset diabetic cases in GB. Con-
trols are drawn from the national 1958 birth cohort. Confirmation of
positive results in case-parent family studies (˜ 3,000 trios).

Most extreme results are in the HLA region. There is at least one
large known association in the HLA region and strong LD. There is
also evidence of general overdispersion.

Most extreme finding is another knwn association (at least it is
known now). General overdispersion remains.

Repeating these analyses using highly reliable single-marker typing
revealed:
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Figure 28: QQ plot: all SNPs with MAF
> 1%

Figure 29: QQ plot: omitting the HLA
region
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• genotyping errors, acting differentially between cases and controls

• ”informative missingness”, again acting differentially

How? Typing was done ”blind” to case/control status and in
random order. Yet closer inspection showed different characteristics of
the genotype scoring – presumably due to the fact that cell lines were
created and DNA extracted in different laboratories.

Figure 30: QQ plot: omitting the HLA
region

As can be seen in Figure 30, there is still some overdispersion.
Controlling for geography, little overdispersion remains (Mantel-
extension test, stratified by 12 broad regions).

In this study, differential misclassification of ”exposure” (here
genotype) between cases and controls was more of a problem than
unmeasured confounding by population substructure. Great care will
be necessary – particularly with very high throughput technologies
and automated genotype scoring procedures.
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Figure 31: QQ plot: omitting the HLA
region
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