GLM tutorial
Outline

Highlights the connections between different class of widely used models in psychological and biomedical studies.

- ANOVA
- Multiple Regression
- LM
- Logistic Regression
- GLM
- Correlated data
- GLMM
Traditionally, ANOVA has been associated with the analysis of a continuous response and categorical predictors, or factors, in the tradition of design of experiments.

Consider the following model for a two-way ANOVA (factors A and B), without interaction:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk},$$

where y_{ijk} represents response of the kth subject for the ith level of A and jth level of B; μ is the overall mean, α_i and β_j are the main effects of A and B. (We need additional constraints to identify the model.)

If the design is balanced, the total variation in the responses can be partitioned in an orthogonal manner. An F-test can be constructed to test each of the two associated hypotheses (no effect of A and B).
ANOVA vs. regression (Con’t)

However, the standard ANOVA model can be formulated as a regression model where dummy-coded variables are used to code for the factors.

Let A and B be two-level factors, an equivalent regression model is

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i,$$

with β_0 is the intercept, β_1 and β_2 the regression coefficients associated to each factor.

An F-test can be construct to test whether any of the regression coefficients is different from zero, while t-tests can be used for testing each regression coefficient.
A simulated dataset
aov or lm?

R’s `aov` function is just a wrapper function for `lm`, except that it adds a special treatment to the `Error=` term. More precisely, `lm` uses the residual error as the error term for all effects.

```
Sample size  | n <- 50
Effect sizes | es <- c(.6, -.4)
Two-level factors, A and B, with [-1,1] contrast | A <- gl(2, 2, n, labels=c(-1,1))
                                                 | B <- gl(2, 1, n, labels=c(-1,1))
Simulate a response vector | y <- es[1]*as.numeric(as.character(A)) +
                             |   es[2]*as.numeric(as.character(B)) +
                             |   rnorm(n)
Output from ANOVA and LM | summary(aov.res <- aov(y ~ A + B))
                           | summary(lm.res <- lm(y ~ A + B))
```
aov or lm? (Con’t)

Results for `aov(y ~ A + B)` are:

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>18.88</td>
<td>18.884</td>
<td>16.90</td>
<td>0.000157 ***</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>6.69</td>
<td>6.695</td>
<td>5.99</td>
<td>0.018176 *</td>
</tr>
<tr>
<td>Residuals</td>
<td>47</td>
<td>52.53</td>
<td>1.118</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

while for `lm(y ~ A + B)` we have:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|-----------|------------|---------|----------|
| (Intercept) | -0.2016 | 0.2556 | -0.789 | 0.434292 |
| A1 | 1.2301 | 0.2993 | 4.111 | 0.000157 *** |
| B1 | -0.7318 | 0.2990 | -2.448 | 0.018176 * |

The $\hat{\beta}_1$ coefficient (A1) is readily obtained as `diff(tapply(y, A, mean))`.

However, using `anova(lm(y ~ A + B))` yields the expected ANOVA table.
A model comparison approach

We can test the significance of a single predictor using an F-test:

- Fit a reduced model
- Compute reduction in RSS

\[
\begin{align*}
\text{lm.res2} & \leftarrow \text{update(lm.res, . ~ . - B)} \\
anova(lm.res2, lm.res)
\end{align*}
\]

The overall F-value in the regression table is simply \texttt{anova(lm(y ~ 1), lm.res)} (with 2 df, for the difference in terms of parameters). In other words, we compare a model with k parameters to the base or null model which includes only an intercept term (the ‘grand mean’).

This works for ANOVA too: \texttt{anova(aov(y ~ A), aov(y ~ A+B))} yields the F-test corresponding to the main effect of B.

In this particular setting, we will get similar results using \texttt{drop1(lm.res, test="F")}. (With a balanced design, Type I, II, and III SS all give the same results.)
Types of sum of squares

Testing the effects of ANOVA terms with unbalanced data involves choosing the way SS are computed since the factors are no longer orthogonal, e.g. [1] and [2, §8.2.4–8.2.6].

The difference between Type I/II and Type III (also called Yates’s weighted squares of means) lies in the model that serves as a reference model when computing SS, and whether factors are treated in the order they enter the model or not. E.g., for a saturated two-way ANOVA model:

- **Type I** (default): \(SS(A), SS(B|A), \text{ then } SS(AB|B, A)\)
- **Type II**: \(SS(A|B), \text{ then } SS(B|A)\) (no interaction)
- **Type III**: \(SS(A|B, AB), SS(B|A, AB)\) (interpret each main effect after having accounted for the other main effect and interaction)
Types of sum of squares (Con’t)

Here is an illustration of how SSs will differ with an unbalanced design:

<table>
<thead>
<tr>
<th>Load package</th>
<th>library(car)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirror our dataset but remove some combinations of factor</td>
<td>tmp <- data.frame(y, A, B)</td>
</tr>
<tr>
<td>Fit a full model</td>
<td>tmp <- tmp[-sample(1:n, 10),]</td>
</tr>
<tr>
<td>Type II SS</td>
<td>aov.res2 <- aov(y ~ A * B, data=tmp)</td>
</tr>
<tr>
<td>Type III SS</td>
<td>Anova(aov.res2)</td>
</tr>
<tr>
<td></td>
<td>Anova(aov.res2, type="III")</td>
</tr>
</tbody>
</table>
Model diagnostics

Don’t trust your model without examining the quality of fit, that is the distribution of residuals!

Two useful diagnostic plots:

- Plot residuals versus predicted response to verify that variance is constant and that no outliers are present.

- Plot residuals against each predictor to verify the linearity of the modelled relationships. With multiple predictor, it is called a partial residual plot.

Partial residual (Ceres) plots are available as `car::crPlot` or `faraway::prplot`.
Model diagnostics (Con’t)
Model predictions

The ANOVA has four cells (and the rhs of the regression model yields four possible outcome for \tilde{y}_i). In R, we can use

\[
\begin{align*}
\text{Combination of factor levels} & \quad \text{new.df} & \leftarrow & \text{expand.grid(A=levels(A),} \\
& & & \quad \text{B=levels(B))} \\
\text{Predict expected values at a glance} & \quad \text{new.df$pred} & \leftarrow & \text{predict(lm.res, new.df)} \\
\text{Or using little algebra (}a_1b_2) & \quad \text{t(coef(lm.res))} & \%*\%c (1, 0, 1)
\end{align*}
\]

Adding `se.fit=TRUE` will give the corresponding standard errors, while confidence intervals for predicting future observations are obtained with `interval="p"`.

\[
\begin{array}{cccccc}
A & B & \text{fit} & \text{lwr} & \text{upr} \\
1 & -1 & -1 & -0.2015823 & -2.389632 & 1.986468 \\
2 & 1 & -1 & 1.0285051 & -1.162855 & 3.219865 \\
3 & -1 & 1 & -0.9334258 & -3.121476 & 1.254624 \\
4 & 1 & 1 & 0.2966616 & -1.894699 & 2.488022 \\
\end{array}
\]
Predicted values

-1.0 -0.5 0.0 0.5 1.0
a1 a2
● ●

b1 b2
● ●
Computing CIs for model parameters

The `confint` function gives asymptotic confidence intervals for a certain level (default, 95%):

\[
\begin{array}{c|c|c}
2.5\% & 97.5\% \\
(\text{Intercept}) & -0.7158092 & 0.3126446 \\
A1 & 0.6280653 & 1.8321095 \\
B1 & -1.3333837 & -0.1303032 \\
\end{array}
\]

Instead of relying on asymptotic distribution, we could also estimate 95% CIs using bootstrap.

```r
library(boot)
fm <- y ~ A + B
dd <- data.frame(y, A, B)
reg.boot <- function(formula, data, k)
  coef(lm(formula, data[k,]))
reg.res <- boot(data=dd, statistic=reg.boot, R=500, formula=fm)
boot.ci(reg.res, type="bca", index=2)
```
Studying effects

For ANOVA, various measures of effect size have been proposed in the literature. Some of them are available in the MBESS package. For graphical displays, useful functions are available in the effects package [3].
Case study: The Etch Rate (ER) data

Data on etch rate as a function of RF Power [4].

Load the dataset
etch.rate <- read.table("etchrate.txt", h=T)

Display raw and average values
xyplot(rate ~ RF, etch.rate, type=c("p","a"))
Case study: The ER data (Con’t)

The effect model reads

\[y_{ij} = \mu + \tau_i + \epsilon_{ij}, \quad i = 1, \ldots, a; \ j = 1, \ldots, n \]

where \(\tau_i \) represent the difference between treatment means and the overall (‘grand’) mean, and \(\epsilon_{ij} \sim \mathcal{N}(0; \sigma^2) \).

Fitting the one-way ANOVA in R is done as follows:

```r
Convert each variable to factor
etch.rate$RF <- as.factor(etch.rate$RF)
etch.rate$run <- as.factor(etch.rate$run)

Fit the model
etch.rate.aov <- aov(rate~RF,etch.rate)
summary(etch.rate.aov)
```

The ANOVA table is given below:

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>3</td>
<td>66871</td>
<td>22290</td>
<td>66.8</td>
<td>2.88e-09 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>16</td>
<td>5339</td>
<td>334</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case study: The ER data (Con’t)

A $100(1 - \alpha)\%$ confidence interval for treatment effect $\hat{\tau}_i = \bar{y}_i - \bar{y}$ (see `model.tables`) is computed as

$$\bar{y}_i \pm t_{\alpha/2, N-a} \sqrt{\frac{MSE}{n}},$$

whereas for any two treatment comparison the above formula becomes

$$(\bar{y}_i - \bar{y}_j) \pm t_{\alpha/2, N-a} \sqrt{\frac{MSE}{n}}.$$

We only need to compute the pooled SD which is returned by `summary`.

- Extract MS error

 \begin{verbatim}
 MSe <- summary(etch.rate.aov)[[1]][2,3]
 \end{verbatim}

- Compute pooled SD

 \begin{verbatim}
 SD.pool <- sqrt(MSe/5)
 \end{verbatim}

- Critical quantile of Student’s t

 \begin{verbatim}
 t.crit <- c(-1,1) * qt(.975,16)
 \end{verbatim}
Case study: The ER data (Con’t)

Here, any two treatment difference has an associated 95% CI of $(\bar{y}_i - \bar{y}_j) \pm 24.5$, slightly narrower compared to a t-test.

Note, however, that `confint(etch.rate.aov)` will yield different results:

<table>
<thead>
<tr>
<th></th>
<th>2.5 %</th>
<th>97.5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>533.88153</td>
<td>568.51847</td>
</tr>
<tr>
<td>RF180</td>
<td>11.70798</td>
<td>60.69202</td>
</tr>
<tr>
<td>RF200</td>
<td>49.70798</td>
<td>98.69202</td>
</tr>
<tr>
<td>RF220</td>
<td>131.30798</td>
<td>180.29202</td>
</tr>
</tbody>
</table>

What is computed here is the estimated 95% CI for treatment effect subtracted to a baseline (or reference level, 160 W) because R uses treatment contrast by default. We can compute the last row as

```r
grp.means <- with(etch.rate, tapply(rate, RF, mean))
as.numeric(grp.means[4]-grp.means[1]) + c(-1,1) * qt(.975,16) * sqrt(2*MSe/5)
```
Case study: The ER data (Con’t)

More complex contrasts, especially with higher-order terms in ANOVA models, can be computed with the `multcomp` package. For example, the preceding contrast would be obtained as follows:

```
library(multcomp)
etch.rate.lm <- lm(rate ~ RF, etch.rate)
etch.rate.glht <- glht(etch.rate.lm, mcp(RF=c(-1,0,0,1)))
summary(etch.rate.glht)
confint(etch.rate.glht)
```
What are GLMs?

The theory of Generalized Linear Model encompasses a unified approach to regression models where a single response variable is assumed to follow one of the exponential family probability distribution [5]. This includes the following PDFs: gaussian, binomial, Poisson, gamma, inverse Gaussian, geometric, and negative binomial.

The idea is to ‘relax’ some of the assumptions of the linear model such that the relationship between the response and the predictors remains linear. You may recall that in the case of linear regression, we usually relate the predictors to the expected value of the outcome like so:

$$E(y \mid x) = X\beta$$
From linear to logistic regression

How can this be achieved with a logistic regression where individual responses are binary and follow a Bernoulli, or $\mathcal{B}(1; 0.5)$, distribution? Moreover, a standard regression model could predict individual probabilities outside the $[0; 1]$ interval. Some transformations, like $p' = \arcsin p$, have been proposed to allow the use of ANOVA with binary data [6, p. 278–280]. However, it is fairly easy to apply a logistic regression, see also [7].

Considering the logit transformation of the probability of the event under consideration, $\pi(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$, the logistic regression model is comparable to the linear case, i.e. it is additive in its effect terms. In the simplest case (one predictor + an intercept term), we have:

$$g(x) = \ln \left(\frac{\pi(x)}{1 - \pi(x)} \right) = \beta_0 + \beta_1 x.$$
Illustration with artificial data

Suppose the following model holds: \[\pi_i = \frac{\exp(-6 + 1.5x_i)}{1 + \exp(-6 + 1.5x_i)} \], where \(\pi_i \) is the probability of a positive outcome for individual \(i \). Below are the results from fitting a logistic regression and a linear regression on \(N = 150 \) observations drawn from the above model.
At a glance

Every commands that can be used with linear regression (predict, fitted, resid, summary, plot, etc.) will work when fitting a logistic model. However, there are more convenient functions in the rms package [8].

Instead of \texttt{lm}, we will now use \texttt{glm}:

\begin{verbatim}
formula: response ~ predictors
residuals: distribution and link function
glm(low ~ age + lwt + race + ftv, data = birthwt, family = binomial(logit),
 subset = smoke == "No", na.action = na.omit)
\end{verbatim}

\textbf{formula:} response \sim predictors

\textbf{residuals:} distribution and link function

\textbf{glm} (low \sim age + lwt + race + ftv, data = birthwt, family = binomial(logit),
 subset = smoke == "No", na.action = na.omit)

\textbf{restriction:} subsample \quad \textbf{missing values:} listwise deletion

The \texttt{effects} package also works with GLMs.
Case study: The lwb study

Prognostic study of risk factor associated with low birth infant weight [9].

<table>
<thead>
<tr>
<th>Load the dataset</th>
<th>data(birthwt, package=MASS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recode categorical predictors</td>
<td>birthwt <- within(birthwt, {</td>
</tr>
<tr>
<td></td>
<td>race <- factor(race, labels=c("White",</td>
</tr>
<tr>
<td></td>
<td>"Black",</td>
</tr>
<tr>
<td></td>
<td>"Other"))</td>
</tr>
<tr>
<td></td>
<td>smoke <- factor(smoke, labels=c("No","Yes"))</td>
</tr>
<tr>
<td></td>
<td>ui <- factor(ui, labels=c("No","Yes"))</td>
</tr>
<tr>
<td></td>
<td>ht <- factor(ht, labels=c("No","Yes"))</td>
</tr>
<tr>
<td></td>
<td>})</td>
</tr>
<tr>
<td>Some descriptive statistics</td>
<td>library(Hmisc)</td>
</tr>
<tr>
<td></td>
<td>summary(low ~ age + lwt + race + ftv,</td>
</tr>
<tr>
<td></td>
<td>data=birthwt)</td>
</tr>
</tbody>
</table>
Case study: The lwb study (Con’t)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>N</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>[14,20)</td>
<td>51</td>
<td>0.2941176</td>
</tr>
<tr>
<td></td>
<td>[20,24)</td>
<td>56</td>
<td>0.3571429</td>
</tr>
<tr>
<td></td>
<td>[24,27)</td>
<td>36</td>
<td>0.4166667</td>
</tr>
<tr>
<td></td>
<td>[27,45]</td>
<td>46</td>
<td>0.1956522</td>
</tr>
<tr>
<td>lwt</td>
<td>[80,112)</td>
<td>53</td>
<td>0.4716981</td>
</tr>
<tr>
<td></td>
<td>[112,122)</td>
<td>43</td>
<td>0.2325581</td>
</tr>
<tr>
<td></td>
<td>[122,141)</td>
<td>46</td>
<td>0.2608696</td>
</tr>
<tr>
<td></td>
<td>[141,250]</td>
<td>47</td>
<td>0.2553191</td>
</tr>
<tr>
<td>race</td>
<td>White</td>
<td>96</td>
<td>0.2395833</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>26</td>
<td>0.4230769</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>67</td>
<td>0.3731343</td>
</tr>
<tr>
<td>ftv</td>
<td>0</td>
<td>100</td>
<td>0.3600000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>47</td>
<td>0.2340426</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>30</td>
<td>0.2333333</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>0.5714286</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>0.2500000</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>0.0000000</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>189</td>
<td>0.3121693</td>
</tr>
</tbody>
</table>

26
We will now consider the following model, in Wilkinson and Rogers’ notation: \(\text{low} \sim \text{age} + \text{lwt} + \text{race} + \text{ftv} \).

Here, the default link function is a \text{binomial(logit)}. The above model is equivalent to \text{glm(low} \sim \text{age} + \text{lwt} + \text{race} + \text{ftv}, \
\text{data=birthwt, family=binomial}).
Case study: The lwb study (Con’t)

Below is a partial output showing estimates for the regression coefficients (on the link scale):

| Coef | S.E. | Wald Z | Pr(>|Z|) |
|---------|--------|--------|----------|
| Intercept | 1.2954 | 1.0714 | 1.21 | 0.2267 |
| age | -0.0238 | 0.0337 | -0.71 | 0.4800 |
| lwt | -0.0142 | 0.0065 | -2.18 | 0.0294 |
| race=Black | 1.0039 | 0.4979 | 2.02 | 0.0438 |
| race=Other | 0.4331 | 0.3622 | 1.20 | 0.2318 |
| ftv | -0.0493 | 0.1672 | -0.29 | 0.7681 |

In place of the overall F-test for a regression table, we now have a likelihood ratio test for the model. The principle is identical (assess the reduction in deviance between the null model and the full model).

Model Likelihood
 Ratio Test
 LR chi2 12.10
d.f. 5
Pr(> chi2) 0.0335
Case study: The lwb study (Con’t)

A more convenient summary table (adjusted ORs with 95% CI) might be obtained with `summary(fit(glm1))`.

<table>
<thead>
<tr>
<th>Effects</th>
<th>Response : low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>Low</td>
</tr>
<tr>
<td>age</td>
<td>19</td>
</tr>
<tr>
<td>Odds Ratio</td>
<td>19</td>
</tr>
<tr>
<td>lwt</td>
<td>110</td>
</tr>
<tr>
<td>Odds Ratio</td>
<td>110</td>
</tr>
<tr>
<td>ftv</td>
<td>0</td>
</tr>
<tr>
<td>Odds Ratio</td>
<td>0</td>
</tr>
<tr>
<td>race - Black:White</td>
<td>1</td>
</tr>
<tr>
<td>Odds Ratio</td>
<td>1</td>
</tr>
<tr>
<td>race - Other:White</td>
<td>1</td>
</tr>
<tr>
<td>Odds Ratio</td>
<td>1</td>
</tr>
</tbody>
</table>
Case study: The lwb study (Con’t)

Like in linear regression, to assess the significance of individual predictors we can compare two nested models. E.g., age and ftv appear to be non-significant. An LRT can confirm that:

- Fit a reduced model
- Test it against the full model
- Summarize the reduced model

```
fit.glm2 <- update(fit.glm1, . ~ . -age-ftv)
lrtest(fit.glm2, fit.glm1)
anova(fit.glm2)
```

Stepwise methods for variable selection can also be used but be aware that such methods are unstable, yield biased estimation of regression coefficients and misspecified estimates of variability, but above all there is no control on p-values. See [8] or [10, §11.7] for alternative ways of performing variable selection.
Case study: The lwb study (Con’t)

Using the last model, we can predict the expected outcome (with confidence intervals for means) for a particular range of weight at last menstrual period, depending on mother’s ethnicity. The syntax is similar to that of R base `predict` function.

Still on the log odds scale, we can predict the expected weight category for a white mother’s of last menstrual weight \(\text{lwt}=150 \).

Predicted response on the log odds scale

Point estimate for a particular outcome

Get the OR using little algebra

\[
\text{pred.glm2} \leftarrow \text{Predict(} \text{fit.glm2}, \text{lwt=seq(80, 250, by=10)}, \text{race) }
\]

\[
\text{Predict(} \text{fit.glm2}, \text{lwt=150, race="White")}
\]

\[
\exp(\text{sum(coef(fit.glm2)*c(1, 150, 0, 0)))}
\]

<table>
<thead>
<tr>
<th>lwt</th>
<th>race</th>
<th>yhat</th>
<th>lower</th>
<th>upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
<td>-1.477712</td>
<td>-2.042931</td>
<td>-0.9124926</td>
</tr>
</tbody>
</table>

Response variable (y): log odds
Case study: The lwb study (Con’t)
Take-away message

- ANOVA, Linear regression, and Logistic regression can be understood using the GLM framework which related a response variable to continuous or categorical predictors through a link function.

- R provides a lot of tools to construct GLMs, assess model fit, and display summary statistics either graphically or numerically.

- Rather than p’ing everything, it is often more interesting (and informative!) to work with interval and pointwise estimation, together with effect size.
References

