lwb.R: Code explained

Christophe Lalanne

October 2011

The *low birth weight* study\(^1\) will be used to illustrate basic descriptive and inferential techniques in R. This is a complete study, although analysis will somehow depart from the one presented in Hosmer and Lemeshow’s book. In an attempt to alleviate the need to learn a lot of external commands, we restricted the use of external packages to a few ones that will, however, save your life in daily R activities. In particular, we rely on lattice plotting facilities whenever possible. Many textbooks give a detailed overview of the techniques used throughout this tutorial, but Zar and Steyberg’s books\(^2\) describe everything we need here.

Preparing the dataset

Importing data

The *low birth weight* dataset is already available in the MASS package, as *birthwt*. To load a built-in dataset in R, we use `data`. If we want to use the Stata *lbw* dataset instead, we could use the `read.dta` function in the foreign package. To know how data are stored, we then use `str` which displays the first values of each variables, and their storage mode.

```r
> library(MASS)
> data(birthwt)
> str(birthwt)
'data.frame': 189 obs. of 10 variables:
$ low : int 0 0 0 0 0 0 0 0 0 0 ...
$ age : int 19 33 20 21 18 21 22 17 29 26 ...
$ lwt : int 182 155 105 108 107 124 118 103 123 113 ...
$ race : int 2 3 1 1 1 3 1 3 1 1 ...
$ smoke: int 0 0 1 1 1 0 0 0 1 1 ...
$ ptl : int 0 0 0 0 0 0 0 0 0 0 ...
$ ht : int 0 0 0 0 0 0 0 0 0 0 ...
$ ui : int 1 0 0 1 1 0 0 0 0 ...
$ ftv : int 0 3 1 2 0 0 1 1 1 0 ...
$ bwt : int 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
```

To get a gentle numerical overview of the data, we can use the `summary` function.

```r
> summary(birthwt)

    low  age  lwt     race
Min. :0.0000 Min. :14.00 Min. : 80.0 Min. :1.000
1st Qu.:0.0000 1st Qu.:19.00 1st Qu.:110.0 1st Qu.:1.000
Median :0.0000 Median :23.00 Median :121.0 Median :1.000
Mean :0.3122 Mean :23.24 Mean :129.8 Mean :1.847
```

To get a list of available datasets, type `data()` at the R prompt.

The very first thing to do with unknown datasets is to check for the presence of missing values (MV). This is done with `is.na`, but see also `complete.cases`. Some statistical models don’t accommodate well with MV, others delete them listwise. In R, MV are stored as `NA`. Here, we use `apply` to compute the number of missing values across the columns (1 means by row, 2 means by column) of the `data.frame`. It is more efficient (and more elegant) than a for loop.

```
> apply(birthwt, 2, function(x) sum(is.na(x)))
  low age lwt race smoke ptl ht ui ftv bwt
0   0   0   0   0   0   0   0   0   0
```

Recoding and checking variables

Some of the factors of interest will not be understood by R as we would like it to do because they are just treated as numerical variables. So, the next step is to convert them to (unordered) factor. The `within` command provides a convenient to update several columns in a `data.frame` within a single call.

```
> birthwt <- within(birthwt, {
  + low <- factor(low, labels=c("No","Yes"))
  + race <- factor(race, labels=c("White","Black","Other"))
  + smoke <- factor(smoke, labels=c("No","Yes"))
  + ui <- factor(ui, labels=c("No","Yes"))
  + ht <- factor(ht, labels=c("No","Yes"))
  + })
```

It is important to take care of the way R represents data, especially when we want it to treat some variable as a factor or discrete-valued vector.

Again, with unknown data, it is recommended to take a close look at the distribution of numerical variables, which in this particular case can be isolated using a repeated call to `is.numeric`.

```
> idx <- sapply(birthwt, is.numeric)
```
We then use box-and-whiskers charts to summarize each distribution. Note that we have rescaled them to avoid the problem of varying y-axis.

```r
> boxplot(apply(birthwt[,idx], 2, scale))
```

Summarizing data

Most base functions in R can be used to summarize our variables, either numerically or graphically. We have already seen the useful `summary` command. For numerical variables, it will output a five-number summary; for categorical data, a frequency of counts. In both cases, missing cases will be reported separately. However, there is a full set of dedicated tools included in the **Hmisc** package, especially the `summary.formula` command.

```r
> library(Hmisc)
> summary(low ~ ., data=birthwt, method="reverse", overall=TRUE)
> summary(bwt ~ ., data=birthwt)
```

```r
> summary(low ~ smoke + ht + ui, data=birthwt, fun=table)
```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>smoke</td>
<td>No</td>
<td>155</td>
<td>86</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>74</td>
<td>44</td>
<td>30</td>
</tr>
<tr>
<td>ht</td>
<td>No</td>
<td>177</td>
<td>125</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>12</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>ui</td>
<td>No</td>
<td>161</td>
<td>116</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>28</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>189</td>
<td>130</td>
<td>59</td>
</tr>
</tbody>
</table>

The above commands might be combined with the `latex` function to produce pretty-print output, which follow standards for publications in biomedical journal.

Multivariate displays can be used, essentially to study relationships between numerical variables or assess any systematic patterns of covariations. At this stage, it might be interesting to highlight individuals according to a certain characteristic (e.g., low birth weight).

```r
> library(lattice)
> parallel(birthwt[,idx], groups=birthwt$low, horizontal.axis=FALSE)

> print(parallel(~ birthwt[,idx] | smoke, data=birthwt, groups=low, + lty=1:2, col=c("gray80","gray20")))
```

Figure 1: Parallel box and whiskers charts.

The added functionalities proposed in the **Hmisc** package are oversized compared to most R packages. To use some of the most powerful commands, it will be necessary to read carefully the on-line help.
Visual exploration of the dataset3 can also rely on brushing and linking techniques available in the \texttt{ggobi software}, or directly with the \texttt{Acinonyx} package. Below is a screenshot after having selected low weight infants from the histogram.

Dealing with continuous outcomes

Assessing linear two-way relationships

The covariance between mother’s weight in pounds at last menstrual period and birth weight can be assessed using a correlation test. Of course, we need to display the raw data in a scatterplot, first. It is possible to add a local regression line to the cloud of points to visually assess the linearity of the relationship.4

Figure 2: Brushing and linking with interactive graphical devices.

See \texttt{loess} for more details.
```r
> library(lattice)
> print(xyplot(bwt ~ lwt, data=birthwt, type=c("p", "smooth")))

> with(birthwt, cor.test(bwt, lwt))

Pearson's product-moment correlation
data: bwt and lwt
t = 2.5848, df = 187, p-value = 0.0105
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
  0.04417405 0.31998094
sample estimates:
cor
  0.1857333

Two notes of caution about correlation. Correlation does not necessarily mean there exists a causal relationship between the two variables of interest. The use of linear correlation coefficient, like Bravais-Pearson r, is for assessing linear relationship. See Anscombe's famous illustration, help(anscombe).

Compare the results to the ones obtained using Spearman's method, which relies on ranks.

> with(birthwt, cor.test(bwt, lwt, method="spearman"))

Spearman's rank correlation rho
data: bwt and lwt
S = 845135.9, p-value = 0.0005535
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
  0.2488882

Comparing two means

To test the hypothesis that there is no difference in baby weight depending on the smoking status (of the mother), we can use a t-test for independent samples where the standard error is computed from the pooled standard deviation (weighted average of sample SDs).

> t.test(bwt ~ smoke, data=birthwt, var.equal=TRUE)

Two Sample t-test
data: bwt by smoke
t = 2.6529, df = 187, p-value = 0.008667
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  72.75612 494.79735
sample estimates:
mean in group No mean in group Yes
  3055.696  2771.919

Omitting the var.equal=TRUE yields a Welch's t-test which corrects for possible heteroskedasticity by adjusting the degrees of freedom of the reference t-distribution. It is the default under R.

The test statistic is defined as
\[
t_{\text{obs}} = \frac{\bar{x}_1 - \bar{x}_2}{s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},
\]
where \(s\) is a weighted mean of the sample standard deviations. It follows a Student t distribution with \(n_1 + n_2 - 2\) degree of freedom. See help(pt) to get its distribution function, i.e. \(P(t_{\text{obs}} < q)\) for any quantile \(q\). More details can be found in Zar (1999; 8.1).
```
> t.test(bwt ~ smoke, data=birthwt)

 Welch Two Sample t-test

data: bwt by smoke
t = 2.7299, df = 170.1, p-value = 0.007003
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 78.57486 488.97860
sample estimates:
mean in group No mean in group Yes
 3055.696 2771.919

It is always a good idea to check whether the assumptions of the test are met, by computing the variances and displaying a quantile-quantile plot. This allows to gauge the homogeneity of variances and the normality of the distributions (see discussion p. 7).

> with(birthwt, tapply(bwt, smoke, var))

 No Yes
566492.0 435118.2

> with(birthwt, qqnorm(bwt[smoke=="No"], main=""))
> with(birthwt, qqnorm(bwt[smoke=="Yes"], main=""))

In addition, we can produce a graphical summary of the two distributions using boxplots or histograms. To superimpose a kernel density estimate on the latter, see panel.mathdensity.

> print(bwplot(bwt ~ smoke, data=birthwt))
> print(histogram(~ bwt | smoke, data=birthwt, type="count"))

Should we want to use a non-parametric (distribution free) statistic, we could apply a Wilcoxon test with wilcox.test.6

Using re-randomization instead of parametric testing

We could use a permutation technique instead of the \(t \)-test, and consider an approximate or exact distribution of the test statistic to decide whether there is a significant difference between central locations of the two groups.

> library(coin)
> independence_test(bwt ~ smoke, data=birthwt, distribution="exact")

 Exact General Independence Test

data: bwt by smoke (No, Yes)
Z = 2.6113, p-value = 0.008678
alternative hypothesis: two.sided

6 See Zar (1999; 8.9).
Comparing more than two means

In case we are interested in comparing more than two groups, we can use an ANOVA\(^7\) (instead of carrying out multiple unprotected \(t\)-tests).

\[
\begin{align*}
> & \text{fm <- } \text{bwt } \sim \text{ race} \\
> & \text{aov.fit <- aov(fm, data=birthwt)} \\
> & \text{summary(aov.fit)}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>race</td>
<td>2</td>
<td>5015725</td>
<td>2507863</td>
<td>4.9125</td>
</tr>
<tr>
<td>Residuals</td>
<td>186</td>
<td>94953931</td>
<td>510505</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Again, it is good to check the distribution of the residuals (Figure 7).

\[
> \text{plot(aov.fit, which=1)}
\]

The `plot` command is a generic method for linear models objects; here we are just looking at residuals against fitted values.

It is important to understand that the “normality assumption” concerns the distribution of the residuals, not the raw data values. This is obvious when we reframe the ANOVA as a linear model, \(y_{ij} = \mu + \alpha_i + \epsilon_{ij}\) where the \(\alpha_i\) are deviations from the grand mean, for group \(i = 1, \ldots, I\), and \(\epsilon_{ij} \sim N(0; \sigma^2)\) (i.e., residuals are assumed to be i.i.d. gaussian variates).

The `summary` command gives the classical ANOVA table. Sometimes, we are interested in judging whether the between-group means exhibit large differences or not. We can use `tapply`, or simply the `model.tables` command.

\[
> \text{model.tables(aov.fit)}
\]

<table>
<thead>
<tr>
<th>race</th>
<th>White</th>
<th>Black</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>158.1</td>
<td>-224.9</td>
<td>-139.3</td>
</tr>
<tr>
<td>rep</td>
<td>96.0</td>
<td>26.0</td>
<td>67.0</td>
</tr>
</tbody>
</table>

\[
> \text{plot.design(fm, data=birthwt)}
\]

Likewise, a two-way ANOVA can be used to test whether birth weight depends on both smoking status and history of hypertension. If we consider a saturated model, we need to include the interaction `smoke : ht` in addition to the main effects, `smoke + ht`. Following Wilkinson and Rogers’ notation,\(^8\) this reduces to `smoke * ht`.

\[
> \text{summary(aov.fit2 <- aov(bwt ~ smoke * ht, data=birthwt))}
\]

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>smoke</td>
<td>1</td>
<td>3625946</td>
<td>3625946</td>
<td>7.1390</td>
</tr>
<tr>
<td>ht</td>
<td>1</td>
<td>2056920</td>
<td>2056920</td>
<td>4.0498</td>
</tr>
<tr>
<td>smoke:ht</td>
<td>1</td>
<td>324044</td>
<td>324044</td>
<td>0.6380</td>
</tr>
<tr>
<td>Residuals</td>
<td>185</td>
<td>93962746</td>
<td>507907</td>
<td>75.0</td>
</tr>
</tbody>
</table>

\(^7\) Sources of variability in the response variable are seen as the “effect” of the predictor + residuals (unexplained variance). If we express each observation as deviation from its within-group mean, \(y_{ij} = y_i + \epsilon_{ij}\), it is easy to show that \((y_{ij} - \bar{y}) = y_i - \bar{y} + (y_{ij} - y_i)\). When testing the null hypothesis that all \(k\) group means are equal vs. at least one pair of means really differ, we can use the ratio of the between-group and residuals mean squares as a test statistic. It follows a Fisher-Snedecor \(F\) distribution with \(k-1\) and \(n-k\) degrees of freedom. See Zar (1999; 10.1) for more details.

> with(birthwt, interaction.plot(smoke, ht, bwt))

As the interaction appears to be non significant, we can remove this term and fit a model including main effects only.

> aov.fit3 <- aov(bwt ~ smoke + ht, data=birthwt)
> anova(aov.fit2, aov.fit3)

Analysis of Variance Table
Model 1: bwt ~ smoke * ht
Model 2: bwt ~ smoke + ht

Res.Df RSS Df Sum of Sq F Pr(>F)
1 185 93962746
2 186 94286790 -1 -324044 0.638 0.4255

Adding a third term, race, with its two second order interactions, indicates that ethnicity also impacts baby weight, with no dependence on smoking status or history of hypertension.

> summary(aov.fit4 <- update(aov.fit3, . ~ . + race))

Df Sum Sq Mean Sq F value Pr(>F)
smoke 1 3625946 3625946 7.8780 0.005555
ht 1 2056920 2056920 4.4690 0.035892
race 2 8291518 4145759 9.0074 0.000187
smoke:race 2 1754625 877313 1.9061 0.151646
ht:race 2 1393149 696575 1.5134 0.222943
Residuals 180 82847497 460264

We can use multiple comparisons, controlling for FWER, on the final model using Tukey’s HSD contrasts. In fact, only the race effect is of interest here, because the factor has more than two levels. Results can be compared with what would be obtained using t-tests

> with(birthwt, pairwise.t.test(bwt, race))

Pairwise comparisons using t tests with pooled SD
data: bwt and race

 White Black Other
White 0.033 -
Black 0.029 0.605
Other 0.029 0.605

P value adjustment method: holm

and a step-down method to adjust p-values, see help(p.adjust) for more information on correction methods available in R.

> aov.fit5 <- update(aov.fit3, . ~ . + race)
> model.tables(aov.fit5)

Tables of effects

<table>
<thead>
<tr>
<th>smoke</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>111.1</td>
<td>-172.7</td>
</tr>
<tr>
<td>Yes</td>
<td>115.0</td>
<td>74.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ht</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9: Interaction plot for a two-way ANOVA. See also Figure 12, for lattice code.
The update command allows to refit a given model after having added or removed some of its terms.

The familywise error rate is the probability of making one or more type I errors (falsely rejecting the null) when performing multiple tests. A common correction is a single adjustment of nominal p-values using Bonferroni method (\(\alpha / k\) for \(k\) tests) although it is known to be overly conservative. See Zar (1999; 11).
27.16 -400.6
rep 177.00 12.0

race
White Black Other
195.4 -204.6 -200.6
rep 96.0 26.0 67.0

> se.contrast(aov.fit5, list(birthwt$race=="White",
+ birthwt$race=="Black"))
[1] 151.1423

> TukeyHSD(aov.fit5, which="race")

Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = bwt ~ smoke + ht + race, data = birthwt)

$race

<table>
<thead>
<tr>
<th>diff</th>
<th>lwr</th>
<th>upr</th>
<th>p adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-White</td>
<td>-400.059794</td>
<td>-757.1842</td>
<td>0.0238683</td>
</tr>
<tr>
<td>Other-White</td>
<td>-396.023345</td>
<td>-653.1711</td>
<td>0.0010320</td>
</tr>
<tr>
<td>Other-Black</td>
<td>4.036449</td>
<td>-369.1959</td>
<td>0.9996401</td>
</tr>
</tbody>
</table>

> plot(TukeyHSD(aov.fit5, which="race"))

Linear regression

It should be clear that the above models can be tested using classical linear regression. In this case, we use the `lm` command. Note that baseline categories will be the first lexicographic entry for each factor levels. Model diagnostics can be assessed using the `plot` method, as discussed page 7.

```
> lm.fit5 <- lm(bwt ~ smoke + ht + race, data=birthwt)
> summary(lm.fit5)
```

Call:
`lm(formula = bwt ~ smoke + ht + race, data = birthwt)`

Residuals:

```
Min 1Q Median 3Q Max
-2331.70 -462.03 -6.03 474.30 1637.30
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3352.70 91.65 36.580 < 2e-16
smokeYes -424.68 108.33 -3.920 0.000125
htYes -383.06 204.73 -1.871 0.062932
raceBlack -425.47 152.68 -2.787 0.005882
raceOther -448.49 115.72 -3.876 0.000148
```

Residual standard error: 683.6 on 184 degrees of freedom
Multiple R-squared: 0.1398, Adjusted R-squared: 0.1211
F-statistic: 7.475 on 4 and 184 DF, p-value: 1.335e-05

> anova(lm.fit5)
> plot(lm.fit5, which=4)

The above command just shows influential observations as assessed by Cook’s distances. Other measures do exist, but all are based on residuals (standardized or not).

It is interesting to take a closer look at the so-called “design matrix” for this particular model since it is composed of a mix of numerical and categorical predictors.

> head(model.matrix(lm.fit5))

(Intercept) smokeYes htYes raceBlack raceOther
85 1 1 0 0 0 0
86 1 1 0 0 0 0
87 1 0 0 0 0 0
88 1 0 0 0 0 0
89 1 0 0 0 0 0
91 1 0 0 0 0 0

As can be seen, categorical variables are coded as a set of dummy variables; for \(k \) categories, we only need \(k - 1 \) vectors of 0/1, the baseline category (first level of the factor in R) being omitted. Compare the preceding output with

> head(birthwt[,c("smoke","ht","race")])

smoke ht race
85 No No Black
86 No No Other
87 Yes No White
88 Yes No White
89 Yes No White
91 No No Other

Besides basic assumptions of the linear regression, i.e. normal distribution of the residuals, independence of the observations, homoskedasticity, it is important to remember that we further assume the linearity of the relationship between the response and each of the predictors.

Conditional means can be obtained with the `aggregate` command, and plotted using a trellis display. The `effects` package is dedicated to the post-processing of GLM fits: It allows to conveniently display mean predictions with confidence intervals, specific effects (like interactions or contrasts).\(^{11}\)

Here, we have omitted SDs, but they should be added to get an idea of the birth weight variability in each partition of the dataset.

all.means <- aggregate(bwt ~ smoke + ht + race,
data=birthwt, FUN=mean)
print(xyplot(bwt ~ smoke | race, data=all.means, groups=ht,
layout=c(3,1), type=c("p","l"), auto.key=TRUE))

Using a regression approach also allows to include continuous predictor, like age.

> fm <- bwt ~ (smoke + ht) * scale(age, scale=F) + race
> lm.fit6 <- lm(fm, data=birthwt)
> summary(lm.fit6)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3307.17 94.00 35.183 < 2e-16
smokeYes -406.02 108.26 -3.750 0.000238
htYes -419.89 203.76 -2.061 0.040757
scale(age, scale = F) 16.94 12.30 1.377 0.170174
raceBlack -323.07 159.12 -2.030 0.043786
raceOther -387.79 119.14 -3.255 0.001354
smokeYes:scale(age, scale = F) -27.17 20.21 -1.344 0.180598
htYes:scale(age, scale = F) -91.00 48.34 -1.883 0.061367

Residual standard error: 677.8 on 181 degrees of freedom
Multiple R-squared: 0.1681, Adjusted R-squared: 0.136
F-statistic: 5.227 on 7 and 181 DF, p-value: 1.899e-05

> confint(lm.fit6)

 2.5 % 97.5 %
(Intercept) 3121.692120 3492.639098
smokeYes -619.637524 -192.393666
htYes -821.935821 -17.848451
scale(age, scale = F) -7.330845 41.206710
raceBlack -637.041870 -9.097624
raceOther -622.879258 -152.703527
smokeYes:scale(age, scale = F) -67.058287 12.716340
htYes:scale(age, scale = F) -186.372842 4.380221

Bootstrapping can be used to derive empirical confidence interval for model coefficients, instead of relying on asymptotic 95% CIs.

> library(boot)
> bs <- function(formula, data, k) coef(lm(formula, data[k,]))
> results <- boot(data=birthwt, statistic=bs,
+ R=1000, formula=fm)
> boot.ci(results, type="bca", index=2) # smoke

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL : boot.ci(boot.out = results, type = "bca", index = 2)

Intervals :
Level BCa
95% (-599.3, -174.2)
Calculations and Intervals on Original Scale

It is possible to get predicted values, together with confidence bands for means or individuals using the `predict` command. Consider the following model, \(\text{bwt} \sim \text{lwt} + \text{smoke} \). First, we need to estimate predicted values for given values of the predictors.

```r
> fm <- bwt ~ lwt + smoke
> new.df <- expand.grid(lwt=seq(80, 250, by=10),
 + smoke=levels(birthwt$smoke))
> new.df <- data.frame(new.df, predict(lm(fm, data=birthwt),
 + newdata=new.df,
 + interval="confidence")
```

Next, we build a rather complex plot with `lattice` to display fitted regression line with associated 95% confidence bands (for predicting the mean, not individual values).

Although not recommended because of the lack of control on \(p \)-values or biased \(R^2 \) values, we could use `step` or `stepAIC` to perform automatic variable selection on the full model. We will, however, consider that a sensible base model will include at least smoking status, hypertension and age, as well as ethnicity.

```r
> birthwt$age.s <- scale(birthwt$age, scale=F)
> lm.fit7 <- lm(bwt ~ . + ht:age.s + ptl:ftv + ui:ftv,
 + data=birthwt[-1])
> lm.fit7.step <- step(lm.fit7,
 + scope=list(lower= ~ smoke + ht*age.s + race,
 + upper= ~ .), trace=FALSE)
> summary(lm.fit7.step)
```

Figure 13: Predicted values with 95% confidence intervals in a regression model.
A better way to perform variable selection is through penalization, i.e. shrinkage of regression coefficients to zero or use of penalized likelihood.12

\textbf{Dealing with categorical outcomes}

\textbf{Comparing two proportions}

Considering the cross-classification of the existence of previous pre-mature labours (yes/no) with number of physician visits during the first trimester (1 or more than one), we can ask whether there is any association between the two variables using a chi-square test.

```r
> ptd <- factor(birthwt$ptl > 0, labels=c("No","Yes"))
> ftv2 <- factor(ifelse(birthwt$ftv < 2, "1", "2+"))
> tab.ptd.ftv <- table(ptd, ftv2)
> prop.table(tab.ptd.ftv, 1)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>0.761</td>
<td>0.239</td>
</tr>
<tr>
<td>Yes</td>
<td>0.867</td>
<td>0.133</td>
</tr>
</tbody>
</table>
```

```r
> chisq.test(tab.ptd.ftv)

Pearson’s Chi-squared test with Yates’ continuity correction
data: tab.ptd.ftv
X-squared = 1.0762, df = 1, p-value = 0.2996
```

It is usually recommended that expected cell frequencies should be \(> 5\) for the \(\chi^2\) test to be valid, although this criterion has been shown to be very stringent. On a related point, Yates’ correction for continuity in \(\chi^2\) tests results in tests that are more conservative as with Fisher’s “exact” tests. Finally, choosing between \(\chi^2\) and Fisher test depends on the question that is asked and the assumptions that are made by each of them (e.g., in the case of the Fisher’s test we assume that margins are fixed).13

More association measures are available through the \texttt{assocstats} function in the \texttt{vcd} package. This package also features original graphical displays for categorical data.14

In particular, we could test for an association between smoking status (considered here as an exposure factor) and a low-weight infant \(\text{(low)}\), optionally considering ethnicity as a stratification factor. A Cochran-Mantel-Haenszel test15 can be used to derive a common odds-ratio estimate for low baby weight by smoking status, after stratification on ethnicity.

Here is a simple estimate of the odds-ratio, ignoring the stratification factor:

```r
> library(vcd)
> oddsratio(xtabs(~ low + smoke, data=birthwt), log=FALSE)
[1] 2.021944
```

12Stepwise methods are unstable, yield biased estimation of regression coefficients and misspecified estimates of variability, but above all there is no control on \(p\)-values. See Steyerberg (2009; 11.7) for alternative ways of performing variable selection.

14M Friendly. \textit{Visualizing Categorical Data}. SAS Institute Inc., 2000

15The CMH estimator is a weighted average of stratum-specific \(\text{OR}\), defined as

\[
\hat{\text{OR}} = \frac{\sum a_i \times d_i / N_i}{\sum b_i \times c_i / N_i},
\]

where the \(a, b, c, d\) corresponds to individual cells in stratum \(i\) of the form \(\left(\begin{array}{cc}a_i & b_i \\ c_i & d_i \end{array}\right)\) (e.g., low birth weight status in rows and smoking status in columns). It follows a \(\chi^2\) distribution with one degree of freedom.
```r
> fourfold(xtabs(~ low + smoke, data=birthwt),
+     color=rep(c("gray30","gray80"), 3))

> tab.low.smoke.by.race <- xtabs(~ low + smoke + race, data=birthwt)
> plot(oddsratio(tab.low.smoke.by.race))

Compared to stratum-specific ORs (see below), the common estimate equals 3.09.

> with(birthwt, mantelhaen.test(low, smoke, race))

Mantel-Haenszel chi-squared test with continuity correction
data: low and smoke and race
Mantel-Haenszel X-squared = 8.3779, df = 1, p-value = 0.003798
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
 1.490740 6.389949
sample estimates:
common odds ratio
 3.086381

> for (i in 1:3)
+     print(oddsratio(xtabs(~ low + smoke,
+                             data=subset(birthwt, as.numeric(race)==i)),
+                             log=FALSE))
[1] 5.757576
[1] 3.3
[1] 1.25

Testing association in a 2 × k Table

Instead of using a binary indicator, we could also use a trend test which has higher power than the chi-square test when there is indeed a linear or monotonic trend. This test is equivalent to a score test for testing $H_0: \beta = 0$ in a logistic regression model, but it can be computed from the $M^2 = (n-1)r^2$ statistic.\(^{16}\)

Consider, for example, three ordered classes for number of physician visits (ftv) and a binary indicator for baby weight above or below 2.5 kg. A Cochran and Armitage trend test can be carried out as follows:

```r
> birthwt$ftv.c <- cut2(birthwt$ftv, c(0, 1, 2, 6))
> xtabs(~ low + ftv.c, data=birthwt)

 ftv.c | low 0 1 [2,6]
 No | 64 36 30
 Yes| 36 11 5

> independence_test(low ~ ftv.c, data=birthwt, teststat="quad",
+ scores=list(ftv.c=c(0,1,4)))

Asymptotic General Independence Test
data: low by ftv.c (0 < 1 < [2,6])
chi-squared = 0.6433, df = 1, p-value = 0.4225

```
Testing association in three-way Table

When there are more than two variables, we need dedicated methods to display and test associations. Everything is readily available in the vcd, vcdExtra and gnm packages. The co_table command, with or without mar_table, can be used to switch from 3+ to 2-way tables.

```r
> age.q <- cut2(birthwt$age, g=4)
> structable(low ~ age.q + ftv2 + ht, data=birthwt)

<table>
<thead>
<tr>
<th>low</th>
<th>age.q</th>
<th>ftv2</th>
<th>ht</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>[14,20)</td>
<td>No</td>
<td>30</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2+</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>[20,24)</td>
<td>No</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2+</td>
<td>No</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>[24,27)</td>
<td>No</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2+</td>
<td>No</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>[27,45]</td>
<td>No</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2+</td>
<td>No</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>0</td>
</tr>
</tbody>
</table>
```

A more friendly visual summary using a mosaic display:

```r
> mosaic(~ low + age.q + ftv2, data=birthwt, shade=TRUE,
 + labeling_args=list(set_varnames=c(low="Weight < 2.5 kg",
 + age.q="Age range",
 + ftv2= "No. physician visits")))
```

Modeling a binary outcome

Logistic regression

One of the models discussed by Hosmer and Lemeshow was about how low birth weight (< 2.5 kg, low) relates to mother’s age (age), weight at last menstrual period (lwt), ethnicity (race), and number of first trimester physician visits (ftv). As the outcome is binary, we need to use a logistic regression.\footnote{17}{Considering the logit transformation of the probability of the event under consideration, }$\pi(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$, the logistic regression model is comparable to the linear case, i.e. it is additive in its effect terms. In the simplest case (one predictor + an intercept term), we have:

$$g(x) = \ln \left( \frac{\pi(x)}{1 - \pi(x)} \right) = \beta_0 + \beta_1 x.$$
Logistic Regression Model

```r
lrm(formula = low ~ age + lwt + race + ftv, data = birthwt)
```

<table>
<thead>
<tr>
<th>Obs</th>
<th>LR chi2</th>
<th>d.f.</th>
<th>g</th>
<th>Dxy</th>
<th>gamma</th>
<th>tau-a</th>
<th>Brier</th>
</tr>
</thead>
<tbody>
<tr>
<td>189</td>
<td>12.10</td>
<td>5</td>
<td>0.665</td>
<td>0.308</td>
<td>0.310</td>
<td>0.133</td>
<td>0.202</td>
</tr>
</tbody>
</table>

The estimated regression coefficients are the same as those shown in Hosmer and Lemeshow (1989; Table 2.3, p. 38).

A summary of the effects of each factor (or with 95% CI) can be obtained through the `summary` command.

```r
> summary(fit.glm1)
```

<table>
<thead>
<tr>
<th>Effects</th>
<th>Response : low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>Low High Diff. Effect S.E. Lower 0.95 Upper 0.95</td>
</tr>
<tr>
<td>age</td>
<td>19 26 7 -0.17 0.24 -0.63 0.30</td>
</tr>
<tr>
<td>lwt</td>
<td>110 140 30 -0.43 0.20 -0.81 -0.04</td>
</tr>
<tr>
<td>ftv</td>
<td>0 1 1 -0.05 0.17 -0.81 -0.04</td>
</tr>
<tr>
<td>race - Black:White</td>
<td>1 2 NA 1.00 0.50 0.03 1.98</td>
</tr>
<tr>
<td>race - Other:White</td>
<td>1 3 NA 0.43 0.36 -0.28 1.14</td>
</tr>
<tr>
<td>Odds Ratio</td>
<td>1 3 NA 1.54 0.76 0.76 3.14</td>
</tr>
</tbody>
</table>

A likelihood ratio test indicates that at least one coefficient is non zero. It appears that `age` and `ftv` are not significant, according to their Wald statistic.18 We can compare the original model with a model where those terms are removed using an `lrt`.

```r
> fit.glm2 <- update(fit.glm1, . ~ . - age - ftv)
> lrtest(fit.glm2, fit.glm1)
```

<table>
<thead>
<tr>
<th>Model 1: low ~ lwt + race</th>
<th>Model 2: low ~ age + lwt + race + ftv</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.R. Chisq d.f. P</td>
<td>6861841 2.0000000 0.7095729</td>
</tr>
</tbody>
</table>

18 The likelihood ratio test (LRT) allows to test for the change in deviance following the inclusion of one or more predictors, in nested models. It is expressed as

\[ G = -2\ln(\ell_0/\ell_1), \]

where \( \ell_0 \) and \( \ell_1 \) are likelihood of the restricted and full model, respectively. The \( G \) statistic follows a \( \chi^2(1) \) distribution.

A Wald statistic is just the ratio of a parameter estimate \( i \) to its standard error, i.e. \( W = \frac{\hat{\beta}_i}{\hat{SE}(\beta_i)} \) and it follows as a standard normal distribution.
Finally, we could predict the expected outcome (with confidence intervals for means) for a particular range of weight at last menstrual period, depending on mother’s ethnicity.

```r
> pred.glm2 <- Predict(fit.glm2, lwt=seq(80, 250, by=10), race)
> print(xYplot(Cbind(yhat,lower,upper) ~ lwt | race, data=pred.glm2,
+ method="filled bands", type="l", col.fill=gray(.95)))
```

Still on the log odds scale, we can predict the expected weight category for a white mother’s of last menstrual weight \(\text{lwt}=150\):

```r
> Predict(fit.glm2, lwt=150, race="White")
lwt race yhat lower upper
1 150 White -1.477712 -2.042931 -0.9124926
Response variable (y): log odds
Limits are 0.95 confidence limits
```

Or we can use the regression equation directly since we have access parameters estimates. The OR is computed as:

```r
> exp(sum(coef(fit.glm2)*c(1, 150, 0, 0)))
[1] 0.2281591
```

The above approach assumes we have a priori hypothesis concerning the variables to include in our model. Assuming no prior knowledge, it would be necessary to perform some kind of variables selection, using e.g. a penalized likelihood method (see the penalty parameter in `lrm`).

**What’s next?**

Model diagnostic and model selection are important steps when building a predictive model, though it was not discussed here. A very thorough review of relevant methods is available in Steyerberg (2009).

---

Details on the R version and packages used are given below:

- R version 2.13.2 (2011-09-30), x86_64-apple-darwin9.8.0
- Base packages: base, datasets, graphics, grDevices, grid, methods, splines, stats, stats4, utils
- Other packages: boot 1.3-2, coin 1.0-20, colorspace 1.1-1, Hmisc 3.8-3, lattice 0.19-34, MASS 7.3-14, modeltools 0.2-18, mvtnorm 0.9-9991, rms 3.3-1, survival 2.36-10, vcd 1.2-12
- Loaded via a namespace (and not attached): cluster 1.14.0, tools 2.13.2

This document was typesetted in \LaTeX{} as `lwb_explained.rnw`, version 4911255 on 2011/10/24.
Index

aggregate, 10
anova, 16
apply, 2
assocstats (vcd package), 13
birthht (MASS package), 1
coa_table (vcd package), 15
complete.cases, 2
data, 1
factor, 2
fitted, 12
glm, 15, 16
is.na, 2
is.numeric, 2
latex (Hmisc package), 3
lm, 9, 16
loess, 4
lrm, 17
lrm (rms package), 15, 16
mar_table (vcd package), 15
model.table, 7
ols, 16
packages
  Acinonyx, 4
effects, 10
foreign, 1
gnm, 15
Hmisc, 3
lattice, 1, 8, 12
MASS, 1, 11
rms, 16
vcd, 13, 15
vcdExtra, 15
panel.mathdensity (lattice package), 6
plot, 7, 9, 16
predict, 11, 12, 16
read.dta (foreign package), 1
resid, 12
residuals, 12
step, 12
stepAIC, 12
str, 1
summary, 1, 3, 7
summary (rms package), 16
summary.formula (Hmisc package), 3
tapply, 7
update, 8
wilcox.test, 6
with, 2
within, 2